Radio-Electronics

 TELEVISION•SERVICING•HIGH FIDELITY
BUILD yourself a Little Dictator REPAIR those Antenna Rotators DESIGN your Speaker Enclosure

Good results from Kit-built Color TV

SOD OOO ers PER VOLT

NEW AID THE FIRST s 99.50 SUGFIESICD U. S.A, USER MET

RCA will show you how to start a profitable career in Electronics at home!

Faster,
 Easier Way to Begin

If you are considering a future in electronics, now is the time to start! A great new teaching aid"AUTOTEXT", developed by RCA and introduced by RCA Institutes, will help you master the funda. mentals of electronics almost automatically. "AUTOTEXT"' is a system of programmed instruction, a method of learning, proved with thousands of students. Even people who have had trouble with conven. tional home training methods in the past are finding it easier and more fun to begin their training this new way.

Complete Selection of Courses

RCA Institutes offers you a really wide selection of Home Training Courses for every phase of elec. tronics. You can actually pick the field of your choice from a great
variety of courses such as:

- Electronics Fundamentals - TV Servicing • Color TV • Communications • Computer Programming • Drafting • Automation • Transistors - Industrial Electronics.

Liberal Tuition Plan

RCA Institutes Tuition Plan affords you the most economical possible method of home study training. You pay for lessons only as you order them. No monthly payments! No in. stallments necessary! No long term contracts! If you should wish to in. terrupt your training for any reason, you can do so and not owe one cent!

Top Quality Equipment

All equipment furnished to you in RCA Institutes Home Training Courses is top quality. All kits and the equipment you build are yours to keep and use on the job! You never have to take apart one piece to build another!

Graduates Prove Results

RCA Institutes Graduates not only enjoy the prestige associated with the internationally famous name of RCA, but some have gone on to open their own businesses; have important positions in business, industry and government.

START BUILDING A
 better future today! SEND COUPON RIGHT AWAY!

RCA INSTITUTES, inc.

DEPT. RE-84
A Service of Radio Corporation of America
350 West 4th Street, New York, N. Y. 10014

25 Medical Electronies
Hugo Gernsback

AUDID-HIGH FIDELITY-STERED

64 Equipment Report: Sonotone Mark IV Model 9TAHC and Bogen RTIOOO Ceramic Cartridge and Transistor AM.FM-Stereo Receiver
ELECTRONICS
29 The 1960's-Superconductivity's Derade? ...Eric Leshe Amazing magnet may foretell trend. as did transistor in 40 's, maser in 50^{\prime} 's
33 Watelt Those Shifty Resistors ...Carl L. Henry "pectial"resistors" protect relays and transistors. measure light and heat
49 Tunnel Diode Regulator ...I. Queen
50 Servicing Speedlights _-..W ayne Lemons How commervial photoflash units work and how to fix them
55 Quich and Dirty Heat Sink Roy E. Pajenberg
GENERAL
16 Our Standard Abbreviations
37 What's New
Pictorial reports of new derelopments
39 Making Estimates Worries Many Servicers
47 What's Your EQ?
62 Service Clinic
Flat-top, Audio
88 Ten To The Many
Jerry L. Ogdin
Help for people who figure
RADID
28 Booster Triples Radio Output .. Stochy E. Ston
38 Transistors and Voltage Measurements ... T id . Anderson
53 Fixing Auto Antennas
David Held Anybody who's aot a rar with a radio in it con use this information
TELEVISIDN
26 How To Repair Rotators \qquad IIomer L. Davidson First of two articles. Don't climb up on the roof till you have to
COVER SFORY 40 Field Day For Kit Builders: Do-ht-Yourself Color TV Heath Color set comes with 124-page mamat, degaussing coil and built-in dot-generator
48 More On Multiplex Video
TESTINSTRUMENTS
42 Pick-Oif Box \& Watmmeter For CB
Lyman E. Greenlee Build one in a couple of hours to help you in CB service
56 Zener-Stabilized DC. Amplifier \qquad Alex 11. Schotz Good preamp, for de seopes. Construction project
68 Equipment Report: Eico 430 and Texas Crystals TC.-3 3-inch general-purpose srope' and rrystal aliznment generator

THE DEPARTMENTS

12 Comrepondence
90 New Books
79 New Literature
89 New Patents

76 New Product:
71 New Semiconductor:
6 News Brief:
84 Noteworthy Circuits

82 Technicians" News
73 Technotes
86 Try This One
9050 Years Ago

A NEW WORLD OF OPPORTUNITY AWAITS YOU WITH N.T.S. ALL-PHASE HOME TRAINING IN ELECTRONICS

You can install and maintain electronic circuitry in missiles and rockets .specialize in micro-waves, radar and sonar.

You can succeed in TV-Radio Communications... prepare for F.C.C. License, service advanced satellites for industry and defense.

You can service and rapair the electronic "brains' of industry - computers, data processing, and other automation equipment

You can become a highly-paid TV. Radio Technician, an electronics field engineer, or succeed in your awn sales \& service business.

The N.T.S. Master Course enables you to do more, earn more in ELECTRONICS•TELEVISION•RADIO Yet N.T.S. Training costs no more than other courses far less complete

There's a good reason why N.T.S. Master-Training opens a wide new world of opportunity for you in Electronics, Television, Radio.

Everything you learn, from start to finish, can be applied directly to all phases of the Electronics Industry.

As a result, the N.T.S.-Trained Technician can move ahead faster, in any direction - from TV-Servicing to Radio Communications to Space-Missile Electronics and Automation for industry and defense. You can go wherever pay is hignest and opportunity unlimited. Electronic circuitry, for example, is one of science's miracles that is basic to the entire field of Electronics. It is used in satellites, computers and space capsules as well as in today's television sets and high fidelity equipment. N.T.S. shows you how to service and repair electronic circuitry for all electronic applications.
You work on many practical job projects. You build a short-wave, long-wave superhet receiver, plus a large-screen television set from the ground up. N.T.S. training kits contain all the parts you need ... at no extra cost. (See box at right.) You also receive a professiona! Multitester to use during training and on the job. ONE LOW TUITION. You need training related to all phases of Electronics. Industry demands it. Only N.T.S. provides it . . . in ONE Master Course at ONE low tuition.

RESIDENT TRAINING AT LOS ANGELES
If you wish to take your Electronics-TV-Radio training in our famous Resident School in Los Angeles - the oldest and largest school of its kind in the world write for special Resident School catalog and information, or check coupon.

> NATIONAL Sixatin SCH00LS

WORLD-WIDE TRAINING SINCE 1905
ccredited
Member
1000 So. Figueroa St. , Los Angeles, Calif 90037

YOU ENROLL BY MAIL AND SAVE MONEY. No salesmen mears /awer costs for us, tower tuition for you.
START NOW. A whole new world of opportunity awaits the man with Electronic Heme-Training from National Technical Schools - a resognized leader n technical training for 58 years.

One frame of the animated film showing how cards are supplicd to the computer, how the compater puts an output on the mashetio tape.

NOW-COMPUTER MAKES MOVIES

Simple animated films can now be made quickly and cheaply with a computer by a special programming language, according to a report from Bell Telephone Laboratories.

The "movie language" was developed by Kenneth C. Knowlton of the Laboratories. It includes instructions for drawing pictures consisting of straight lines, arcs, complicated curves, letters, simple geometric shapes and shaded areas.

To make movies by the computer, cach frame is divided into 184 rows of 250 square dots, which may be black, white or various shades of gray in between. The special computer language (called BEFLIX, for "Bell Flicks") directs the computer to develop arrays and patterns, to enlarge. shift or copy from one area onto another, and perform other operations.

The instructions are fed to the computer, an IBM 7094, on IBM cards. It makes a tape which is fed to a Strom-herg-Carlson 4020 microfilm recorder. This contains a cathode-ray tube similar to a television tube. and a film camera. Each of the lines is displayed on the tube as it would be on a TV tube. The intensity at any point depends on the instructions sent from the computer by
magnetic tape.
Delegates at the Joint Computer Conference held recently in Washington. D.C., saw a 17 -minute movie in which the computer itself demonstrated the technique for producing animated movies.

The new technique. Dr. Knowlton satys, can already be made at a cost that compares favorably with animation by traditional methods. Still experimental, all its possible applications cannot be foreseen. but it should be particularly valuable for educational films.

METAL BASED TRANSISTOR EXTENDS FREQUENCY RANGE

A new type of silicon transistor. described by Richard R. Garnache of Sprague Electric Co.. is expected to increase the useful frequency range by a factor of 10 . Mr. Garnache said the device has a theoretical upper frequency limit of $20,000 \mathrm{mc}$. but is not likely to exceed $10,000 \mathrm{mc}$ in its present state of development.

The metal-base transistor consists of two layers of single-crystal silicon separated by a layer of metal no more than 100 angstroms thick. It is an invention of Donovan V. Geppert of Stanford Research Institute, and is licensed exclusively to Sprague Electric.

NEW VIDEO RECORDER operates at low speed

A new home video recorder has been announced by Stewart Hegeman. audio designer and engineer, and Robert Morrow. Baltimore designer and consultant. The new machine operates at 30 inches per second, as compared with the 120 inches per second of Fairchild and Telcan recorders previously announced in this magazine.

Hegeman states that the new ParVision recorder will use standard 7 -inch tape reels with 14 -inch wide audio tape. Recording is in two trachs, one for video and one for sound. The bandwidth is 2 megacycles.

Two enginecrs, after viewing a demonstration. felt the new machine had not advanced to the point of devel-

Stewart Hegeman (left) and Robert Morrow. making adiustments on the new recorder fin background, below the TV receiver).
opment of the Fairchild recorder. According to Hegeman, problems are about 85% licked and "We can see the end of the road without any major obstacles."

Another home video recording device is expected in the early fall, when the IIT (Illinois Institute of Technology) Research Institute plans to demonstrate a low-cost recorder.

ION-POWERED CRAFT
 COULD FLY AT 300,000 FEET

A model ion-powered craft which can lift itself off the ground and rise to a height of 20 feet in the laboratory has been demonstrated by Maj. Alexander P. de Seversky. aircraft designer and inventor. The invention was publicized

5 in. Oscilloscope 1

Transistorized Meter 2
Modern Lessons 3

TRAINING FILM
You also get the loan of a motion picture projector and 16 reels of film to help you learn quickly, remember more.

FREE!

> Send For 2 Booklets Today !

EMPLOYMENT SERVICE

All Devry graduates can receive the help of our highly effective employment service without additional cost.

DeVry Techical Institute

Chicago - Toronto
4141 Belmont Avenue
Chicago, Illinois 60641

Job Opportunities continue to increase for the Electronics Technician

Electronics is a multi-billion dollar industry. growing rapidly, calling for well-trained technicians, offering many good-paying opportunities. DeVry prepares you at home - or in its well-equipped training centers - for Radio, Television, Communications, Missiles, Computers, Radar, Control Systems, etc.

DeVry sends the type of materials you need for learning electronics at home. You build and keep (1) a modern 5 -inch oscilloscope and (2) a portable transistorized meter. Use these on the job or to make money as you learn. You work 300 construction and test procedures with our exclusive "Electro-Lab". Modern lessons (No. 3 above) with. their handy foldout diagrams help to speed your progress.

Let us put our more than 30 years of "know-how" behind you today to help you prepare for a lot of brighter, more prosperous tomorrows. Send coupon for 2 FREE booklets today.
Accredited Member of National Home Study Council

DeVRY TECHNICAL INSTITUTE
4141 BeImont Ave
4141 Belmont Ave., Chicago, III. 60641 Dept. RE-q-U Please give me your two free booklets, "Pocket Guide to Real Earnings," and "Electronics in Space Travet"; also include detail on how o tronics. 1 am interested in the following opportunity fields (check one or more):
\square Space \& Missile Electronics
$\square \mathrm{C}$
Commurications
Television and Radio
Microw
Radar
Audarmation Electronics
(1) Broadcasting

- Industrial Electronic

HERE'S ONE WAYTO COOL A HOT AMPLIFIER

the ROTRON

KIT
Beat the heat that wrecks the set by installing a Rotron Whisper Fan Kit. Breathing 60 cubic feet of cool air over, under and around every heat-generating component. the Whisper Fan improves performance by minimizing drift due to temperature change within the enclosure. Requires only 7 watts, just pennies a week to operate. Measuring only $4^{11 \prime \prime \prime \prime} 1{ }_{16}$ square and $1 \frac{1}{2}{ }^{\prime \prime}$ deep, it can be set in a corner or mounted on the rear panel in minutes. Comes com. plete with mounting hardware, plug and cord for electrical connections and instal. lation instructions.
or see your local dealer.
ROTRON mfg. co., inc. WOODSTOCK, NEW YORK
ORicle 9-2401

Major de Seversky manemering his Ionocraft in the laboratory.
immediately following issuance of the patent (No. 3,130,9+5).

The Iomortaft, as de Seversky calls it. keeps itself up hy the "ionic wind" given off by a plane of embtting electrodes in the form of a mesh of hollow. lightweight rods or crossed wires. Below this plane is another similar one. charged to collect the ions emitted from the mesth above. Air molecules set in motion by the movement of the charged ions supply the lifting force. According to Major de Severaky, the test in an environmental chamber indicates that the lifting force is sufficient to give the Ionocraft a ceiling of approximately 300,000 feet (60 miles) above sea level.

A main application of the lonocraft would be as an antenna. Two such antennas sustained approximately 65 miles high at strategic points in the United States would permit direct TV and radio transmission between New York and Los Angeles. The lonocraft can he used also as an intercontinental ballistic missile interceptor. according to its inventor. Who gives a large number of other possible applications.

EAST

Advertising Representatives:
MIDWEST
P.H. Dempers Co.

Eastern S'ales Manager 740 North Rush Street
Radio-Electronics
Chicago. Iltinos 60611
154 West 14 th Street
(312) Michigan 2-4245

New York. N.Y. 10011
(212) ALgonquin 5.7755

SOUTHEAST

Neff Associates J. Sidney Crane, Assoc. 15 Castle Harbor Isle 22 Eight St.. N.E.
Fort Lauderdale. Fla. Atlanta 9, Ga (305) LOgan 6.5656 (404) TRinity 2.6720

WEST COAST SOUTHWEST

Husted Coughlin. Inc.

1830 W .8 th Street Los Angeles 57, Calif. Huston-Coughlin, Inc 444 Market Street San Francisco 11 , Calif (415. GArfield 1-0151)

UNITED KINGDOM

Publishing \& Distributing Co., Ltd.. Mitre House, 177 Regent St., London W.l, England.

[^0]
INVENTOR OF NEUTRODYNE

DIES AT 77
Dr. Louis Alan Hazeltine, inventor of the neutrodyne radio receiver. retired consulting engineer. and former chairman of the physics department at Stevens Institute of Technology (New Jersey) , died at his home in Maplewood, N.J., on May 24th.

Professor Hazeltine was famous chicfly for his inveation in 1923 of the neutrodyne circuit. a means of preventing oscillation in the tuned-radio-frequency receivers of the period. The effect of tube capacitance was balanced out by small capacitors (neutrodons). and the radio-frequency transformers were placed at an angle $(55-60$ de-

CALENDAR OF EVENTS

National Alliance of Television \& Electronic Service Associations (NATESA) Corivention, Aug. 13-16: Chicago, III.
1964 Western Electronic Show and Convention (WESCON), Aug. 25-23; Los Angeles Sports Arena and Hollywood Park. Los Angeles, Calif.
International Convention on Military Electronics (MIL-E-CON 8), Sept. 14-16; Shoreham Hotel, Washington, D. C.
1964 Conference on Radio Meteorology, Sept 14-18; National Bureau of Standards Boulder Laboratories. Boulder. Colo.

Tips for Technicians

How to break the capacitor replacement habit

Ever hear of "original capacitor-itis?" It's a habit that has been plaguing service technicians for decades. Here's what it means. If you need to install a new capacitor, you automatically get one exactly like the one that was in the circuit. The original capacitor, in theory, is the best one for the job.

But... it ain't necessarily so. And breaking the habit can often save you money.

When you need to replace a mica capacitor, for instance . . consider ceramics. They'll often do a better job, for less cost (and we mean up to $1 / 2$ as much) than mica capacitors in most circuits. Ceramic capacitors often give you an extra safety factor in voltage rating, too; except for a few miniature and special types, their standard rating is 1000 volts DC. Some up to 30 KV . You can almost always replace mica with ceramic. But... you seldom can replace ceramic with mica, because ceramics are often selected by original equipment designers for temperature compensating functions.

Don't forget to think of ceramics, too, when you need to replace a molded tubular capacitor. They cost about the same or even less, value for value. If you've got 'em, you can use 'em.

Here are two tips that may save you time and money.
First . . . when you're replacing a capacitor, all you need 9 times out of 10 is the same microfarads and voltage rating. Not a round one. Or a square one.

Second... when you need capacitors, see your Mallory Distributor'. He carries not only a complete line of Mallory Discap" ceramic capacitors . . . the finest in the industry . . . but also Mallory GEM ${ }^{\left.()^{(}\right)}$ and PVC ${ }^{\oplus}$ Mylar ${ }^{*}$ tubulars. Plus Mallory electrolytics, batteries, volume controls, switches, semiconductors. All of them at famous Mallory quality, at sensible Mallory prices.

[^1]
for peanuts, we'll build any of the 115 products shown in this catalog...

EIC(I)

but, why miss all the fun?

Kit building is lots of fun. Besides it enables you to enjoy the best equipment available at a substantial savings. The new 1964 EICO catalog opens the door to kit building enjoyment. Browse through it and you'll find superb values in high fidelity and mono components like the new Classic stereo FM MX receivers, amplifiers and tuners \square 4-track stereo tape decks \square test instruments for bench, tube caddy \& ham shack \square economically-priced speaker systems \square new CB radio kit and ham gear.',

For free 1964 catalog, use coupon:

grees from the vertical) to prevent inductive interaction.

Professor Hazeltine sold his patent -for $\$ 1$ million, according to reportsto a group who organized as the Hazeltine Corp. to license manufacturers under the Hazeltine patent.

In $194+$ Professor Hazeltine retired from the faculty of the Stevens Institute and became a consultant to the Hazeltine Corp. He was also a director of the corporation. retiring 3 years ago.

Hazeltine was a Fellow of the Institute of Radio Engineers and president of the institute in 1936. He was also a Fellow of the American Institute of Electrical Engineers. and a member of the American Physical Society.

HUGO GERNSBACK AWARD

Herbert Paul Maruska, a student in the School of Engineering \& Science of New York University, has received the 1964 Hugo Gernsback Scholarship Award. a $\$ 1.000$ grant presented yearly to a student chosen by the university's College of Engineering faculty.

Mr. Maruska was born in Dallas. Tex., in 1944. His parents moved to New York shortly thereatter, and he received his education in New York public schools and the Bronx High School of Science, becoming interested in electronics while attending high school. He is a member of engineering honor society Tau Beta Pi, and of the electrical engineering honor society Eta Kappa Nu. During last summer's vacation, he worked on medical elcetronics at the New York University Medical Center in Bellevue Hospital. He expects to work there again this summer. Mr. Maruska will graduate in 1965.

LASERS REACH ULTRAVIOLET

Two recent reports from Hughes Aircraft Co. announce laser action at more than 60 new wavelengths, including the ultraviolet. One announcement speaks of a new class of gas ion lasers, using four gaseous elements: argon, krypton, xenon and neon, to achieve

Latest laser (glass tube at right) emits blue, green, violet, red and yellow heams, spanning entire visible portion of spectrum.

laser action.

The ion lasers cover a wide range of frequencies, a majority of the newly discovered color lines heing in the bluegreen portion of the spectrum.

Another report states that a Hughes Aircraft laser team has raised the efficiency of frequency doubling to obtain higher power than has previously been reported.

Between 25% and 30% conversion efficiency from ruby radiation to 3.471 angstroms (in the ultraviolet) was recently reported by Drs. Myer Geller and Walter Sooy. This represents a 10 -megawatt output pulse at the uttraviolet frequency. The same group obtained hetween 15% and 20% efficiency in doubling infrared light at 1.06 microns to obtain 5.300-angstrom green radiation.

bRIEF BRIEFS

The Bell System has asked the Government to approve rates for its see-as-you-talk system between public locations in three cities: New York. Chicago and Washington. Proposed rates would be $\$ 16$ from Washington to New York. $\$ 21$ from Washington to Chicago. $\$ 27$ from Chicago to New York. Customers will be required to make advance arrangements.

New color TV tube introduced by Sylvania is said to get more than 40% higher brightness by using a new phosphor containing the rare-earth element europium.

New slumber-inducing device marketed by Majima Co., Tokyo, Japan, produces a "sleeping tone" which tranquilizes its uscrs by emitting raindroplike continuous sound. "Hearing the tone in bed falls you into deep sleep in a several minutes," says the maker. END

What Job Do You Want In Electronics?

Whatever it is, Cleveland Institute can help you get it!

Yes, whatever your goal is in Electronics, there's a Cleveland Institute program to help you reach it quickly and economically. Here's how: Each CIE program concentrates on electronics theory as applied to the solution of practical, everyday problems. Result... as a Cleveland Institute student you will not only learn electronics but develop the ability to
use it! This ability makes you eligible for any of the thousands of challenging, high-paying jobs in Electronics. Before you turn this page, select a program to suit your career objective. Then, mark your selection on the coupon below and mail it to us today. We will send you the complete details... without obligation . . . if you will act NOW!

Here's an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmis. sion and Broadcast Transmitters.

Cleveland Institute of Electronics

1776 E. 17th St., Dept. RE-94
Cleveland, Ohio 44114

When you pay little or no attention to quality in tubular replacement capacitors, you leave yourself wide open for criticism of your work . . . you risk your reputation... you stand to lose customers. It just doesn't pay to take a chance on capacitors with unknown or debatable performance records when it's so easy to get guaranteed dependable tubulars from your Sprague distributor!

There's no "maybe" with these 2 great SPRAGUE DIFILM ${ }^{*}$ TUBULARS!

The ultimate in tubular capacitor construction. Dual dielectric . . . polyester film and special capacitor tissue ... combines the best features of both. Impregnated with HCX^{\circledR}, an exclusive Sprague synthetic hydrocarbon material which fills every void in the paper, every pinhole in the plastic film before it solidifies, resulting in a rock-hard capacitor section . . . there's no oil to leak, no wax to drip. Designed for $105^{\circ} \mathrm{C}\left(220^{\circ} \mathrm{F}\right)$ operation without voltage derating.

DIFILM ${ }^{\bullet}$ BLACK BEAUTY Molded Tubular Capacitors
The world's most humidity-resistant molded capacitors. Tough, protective outer case of non-flammable molded phenolic . . . cannot be damaged in handling or installation. Black Beauty Capacitors will withstand the hottest temperatures to be found in any TV or radio set, even in the most humid climates.

DIFILM ${ }^{*}$ ORANGE DROP Dipped Tubular Capacitors

A "must" for applications where only radial-lead capacitors will fit . . . the perfect replacement for dipped capacitors now used in many leading TV sets. Double-dipped in rugged epoxy resin for positive protection against extreme heat and humidity. No other dipped tubular capacitor can match Sprague Orange Drops!

For complete listings, get your copy of Catalog C-616 from your Sprague distributor, or write to Sprague Products Company, 81 Marshall Street, North Adams, Massachusetts.
worlo's largest manufacturer of capacitors

DITTO: WE NEED THAT
NATIONAL FACTS CENTER
Dear Editor:
I agrec 100% with your editorial, "Needed: A National Facts Center" in the May 1964 issue of Radio-Electronics. Our facts should be gathered in a central place as the Library of Congress gathers books. The facts center should use the latest in information retrieval equipment to speed the gathering of those facts.

The computer in the center would be a little different from the regular scientific or business installation. Its principal function would be rapid recovery of information with little or no computing. This would mean lower cost because of simpler construction. It should be possible to store much of the information on photographic film rather than magnetic tape or cards. Film is, I understand. less expensive than tape or cards; also, the information is more permanent.

The data could be stored on the film by optical reduction. as in microfilm. or it could be changed to a binary code and stored that way. Comptter retrieval would probably be easier with the binary code while manual retrieval would be easier with microfilm. The film could be stored in rolls. or on cards as film "chips". The type of storage would probably depend on the type of information. An information retrieval computer using all kinds of storage including photographic filn is urgently needed to aid in the recovery of facts that might otherwise be lost.

Also urgently needed is Director John C. Circen's "information scientist". His function would be, not only to collect and store the vast amounts of material coming off the printing presses, but to condense it with as little redundancy as possible. Today, we have not only tremendous amounts of new infor-

Stop kidding yourself about your future in electronics (응)

You've been working long enough to know the truth. Education is what separates the men from the boys in electronics-and you're not going anywhere without more of it. The going gets tougher every day for the man without a sound technical education. And electronics changes so rapidly that even a good education isn't worth much unless it's kept up-to-date. Can't go back to school? You don't have to. CREI offers you industryrecognized home study education in every major area of electronics-even the new field of Space Electronics. Rusty on fundamentals? Don't worry-you're eligible if you work in electronics and have a high school education. Our FREE book gives the details. Tear out the coupon or write:

CREI, Dept. 1408-B, 3224 Sixteenth St., N.W. Washington 10, D. C.

ELECTRONICS	THE CAPITOL RADIO ENGINEERING INSTITUTE founded 1927. accredited member of the national home study council. Dept. 1408-B, 3224 Sixteenth St., N.W., Washington 10, D. C. Please send me FREE book describing CREI Programs in Electronics and Nuclear Engineering Technology. I am employed in electronics and have a high school education.
Name	Age
Address	
City	Zone State
Employed by	
Type of Present Work	
Check: \square Hom	Study \square Residence School \square G. I. Bill $T_{\text {T-21 }}$

tear out coupon-send for free book today

mation, but much of it duplicated and expressed in too many words! Consider, for example, all the material that has been published on audio amplifier design. For someone designing a new audio amplifier to gather it all would take far more time than designing the amplifier. If the information had been previously collected and condensed, getting the data would be much simpler and faster. The reader can doubtless think of many other examples.

The "information scientist" is needed more and more all the time. If we do not conquer our facts, they may conquer us.

David W. Johnston
Washington, D. C.

A VOTE FOR HIGH-GRADE

 TEST-INSTRUMENT PROSECTS
Dear Editor:

The article "A Lab-Quality Audio Generator." by Jon Idestam-Almquist, is excellent (May 1964 issue). This is the kind of test instrument I have been looking for, for a long time now in a magazine. I helieve many like myself prefer "better than available kits" test instruments. May I suggest that you keep on publishing more articles along this line. To follow up this audio generator, I suggest a good squarer (square-wave shaper), in conjunction with this generator.

A tube or transistor version of a good radio-frequency generator will be very much welcomed-one with crystalcontrolled frequencies available.
More power to Radio-Electronics!
Benjamin Reseita

PRAISES PROJECTOR SERIES

Dear Editor:

The series "Servicing Sound Movie Projectors" (October 1963 through January 1964) was most welcome. Your service editor. Jack Darr. has done an excellent job on this series, as well as on many others. 1 would appreciate having future series on equipment not usually handled by the radio-TV technician.

I would like to make a few comments on Mr. Darr's statement about captive service policies (January 1964, page 44). In the last few years I have had several sound projectors in for service and have run into just that problem. Many companies refuse to sell parts to independent servicers. Yet sometimes they fail to provide good service themselves; thus independent shops can usu-
ally get all the projector work they can handle.

The best source I have found for special parts is LaVezzi Machine Works, 4635 W. Lake St., Chicago, Ill. It is the largest manufacturer of film sprockets and other parts for manufacturers. Catalogs are furnished on request, and items can be ordered on company letterhead or purchase order.

It would appear that the best answer to captive service is an independent organization with outstanding technical ability that can give the equipment user service quality unequaled by even the manufacturer.

Continue to bring us specialized service articles. I would also like to see more construction articles on labora-tory-type test equipment.
D. K. Hiskey

Yorba Linda, Calif.

OPPOSES SCOUT SIGNALING REQUIREMENTS CHANGE

Dear Editor:

The proposed Revised Requirements for Boy Scouts of America, which become effective in September 1965, change the signaling requirement for a First-Class Scout. Instead of learning the International Morse code, he would be permitted to fulfill the requirements by learning semaphore. As a veteran Scouter, a Quarter Century Club radio amateur and a professional in communications for more than 25 years, I feel sure that this change will not benefit Scouting, national defense, the communications field, the Scout's pleasure or his community during an emergency.

In a small open launch off the coast of New England on a subfreezing, windy winter day. my companions and I found, as we wanted to get going again after a stop. that we had fouled the screws of the inhoard engine with the anchor line. Efforts to free the line failed. We drifted and tossed close to threatening rocks. About then. someone sighted an approaching ship-possibly our only chance of being rescued.

I took a legal-size sheet of white paper and held it taut in the wind with two hands. I turned it flat-side-to and then edge-to the ship. alternately, trying to signal. like a blinker light, "SOS Prop foulen" in Morse code. I kept on as the ship approached. passed a few miles away and continued on its course.

Just as it was about to go out of sight, it changed course into a large cir-

The move into electronics is your decision. GRANTHAM SCHOOL OF ELECTRONICS makes your move easier...

Beginning at the beginning, Grantham training progresses in a logical, step-by-step manner up through the complex theory of the Missile Age-and all of the math you will need is taught as an integral part of our lessons. Because we present these all-important basic principles with maximum penetration, you will learn to think and reason clectronics rather than relying. on half-understood concepts and rote-memory.
The Grantham program is made up of three consecutive steps, and each completed step increases your value as an electronics man. The following is a "thumb-nail sketch" of the Grantham 3-step program for electronics advancement:

- Course I leads to attainment of your First Class F.C.C. License and may be completed in the classroom or through home study.
- Course II gives you practical experience on a great variety of "live" electronic equipment in the Grantham Student Laboratory.
- Course III offers Advanced Electronics Training (including microwave and radar) and prepares you to advance to senior-technician status.
Get complete details in our free 44-page booklet. Mail coupon, or telephone the school nearest you; phone numbers and addresses are listed below.

Prepare for Employment and/or Advancement in Electronics by training with

GRANTHAM SCHOOL OF ELECTRONICS

Los Angeles Division
1505 N. Western Ave., Los Angeles, Calif. 90027
Seattle Division
408 Marion Street, Seattle, Wash. 98104
Kansas City Division
3123 Gillham Road, Kansas City, Mo. 64109

Washington Division

821 - 19th Street, N.W., Washington, D.C. 20006

Phone:
HO 7-7727
Phone:
MA 2-7227
Phone:
JE 1-6.320
Phone:
ST 3-3614

Mail in envelope or paste on postal card)
National Headquarters Office $44 \cdot \mathrm{M}$ Grantham School of Electronics 1505 N. Western Ave., Hollywood 27, Calif.
Gentlemen: "CAREERS IN ELECTRONICS."

```
Please send me your FREE 44.page booklet,
Please send me your FREE 44.page booklet,

cle, coming close enough to us so we could hear its power megaphone. They said they had read our message, but, because of the rocks, would not get closer to us as long as we were affoat. However, they had radioed for assistance and would watch over us until help came.

Eventually we were towed back to port, grateful that someone able to read code had been aboard that ship.

Partly because of that experience, I am opposed to reinstating semaphore as a signaling option. It would not have worked in a case like the one just reported. I learned it as a Scout about 30 years ago and have had virtually no opportunity to use it. But there are many opportunities to use Morse code. There are more than a quarter million radio amateurs in the US, and many more overseas. There are about 600.000 reg istered First-Class Scouts, many exScouts, communications men and others able to copy code in some degree. Radio amateurs are well known for their aid in time of disaster, and Scouts have been one of the principal sources for radio amateurs.

Ships usually use Morse blinker rather than semaphore for visual contact. Morse is certainly no harder to learn than semaphore, and is much more versatile: it needs only a single flag, blinker or audible signal.

Though semaphore might possibly be left as an option in the Signaling Merit Badge requirements, it should certainly not be an optional alternate to Morse code in the First-Class requirements.

I solicit your aid in preventing this change. Express your opposition to the National Council, Boy Scouts of America, New Brunswick. N. J.

Walter Tucker, K4BRI
Springfield, Va.

\section*{TRANSISTOR-PORTABLE POWER}

SUPPLY FILLS A NEED

\section*{Dear Editor:}

A word of praise for the transistor radio power supply designed by Wayne Lemons ("Bench Supply for Transistor Radios," May 1964. page 38 ). This instrument certainly fills a definite need. It performs perfectly, and fits neatly under a shelf just above my workbench.

I consider Mr. Lemons one of your ablest contributors.

> Gien H. Bryant

Hoisington, Kan.

\section*{OUR STANDARD ABBREVIATIONS}

Radio-Electronics has always tried to maintain a consistent style in the abbreviations used in text and artwork (diagrams and photo "callouts"). New abbreviations are developed as new terms are added to our electronic vocabulary. We are printing this revised list of abbreviations to bring our old readers up to date and to help readers who have not been with us long enough to recognize the forms consistently used in our magazine.

The abbreviations are indexed by symbol with Greek letters treated like English phonetic equivalents. Many of those listed are always spelled out in the text and are abbreviated in our art work. Terms used only in artwork —and those capitalized in text-appear in capitals. Abbreviations in lower-case letters are so used in text and are capitalized in art work. Periods are used in abbreviations only where the abbreviation might be confused for a word. For example, rf and i.f. are our abbreviations for radio frequency and intermediate frequency, respectively.

\section*{ABBREVIATION ELECTRONIC TERM}
\begin{tabular}{ll} 
A & ampere(s) \\
ac & alternating current \\
acc & automatic chroma control \\
ADJ & adjacent, adjustment \\
af & audio frequency \\
afc & automatic frequency control \\
AFT & audio-frequency transformer \\
agc & automatic gain control \\
AM & amplitude modulation \\
amp & ampere(s) \\
AMPL & amplifier \\
ANT & antenna \\
apc & automatic phase control \\
AITEN & attenuator \\
AUTOTRANS & autotransformer \\
avc & automatic volume control \\
AWG & American wire gage \\
b or base & base (of transistors) \\
BAL MOD & balanced modulator \\
BALUN & balanced-to-unbalanced \\
BATT & transformer \\
BCI & battery \\
bfo & broadcast interference \\
BO & beat frequency oscillator \\
BTO & Barkhausen oscillation \\
C & blockingetube oscillator \\
C, CAP & collector (of transistors) \\
CALIB & capacitor (capacitance) \\
Cath (K on tube & calibrate \\
cathode \\
CATH FOms) & cathode follower \\
CENT & centering \\
CH & choke \\
CHAN & channel \\
CHG & charge \\
CKT & circuit
\end{tabular}

END

RAVE REVIEW ON SONY 600


\section*{Radio-Electronics Magazine June, 1964 says:}
"This recorder has some very good specifications and, although its price is above the 'cheap' range, one does not readily believe such excellent specs for a 4-track machine until they prove out. This machine fulfilled its promise. With it, you can tape your stereo discs and play them back without being able to detect any difference, which is saying something. The physical design of this unit is good, for either permanent installation or the most complete portability.
"The footage indicator is a footage indicator, not merely a place spotter, and it keeps its count with all normal tape movements. Independent control of left and right channels, so one can be operated in record, while the other is in playback, enable the unit to be used for an endless variety of 'special' effects.
"Playback and record functions are completely separate, so that a recorded program caln be monitored immediately. Microphone and auxiliary inputs can be mixed for combination and re-record effects. First stage amplification uses transistors, while the main amplification uses tubes-a good marriage in this particular design.
"The mikes are very good, compared with most of the 'inexpensive' types used with home recorders. Extremely good realism is possible for home recordings. I had my family 'act natural' in front of the two-mike combination and the playback was unbelievably real.
"The Sony 600 will naturally take a little playing around to find out how to do various 'extra' things you may want. But when you get to know it, you'll find it a very versatile instrument. It's a recorder with which familiarity brings confidence."

Norman H. Crowhurst
For further information, or complete copy of the above test report, write Superscope, Inc. " 600 Test Report G, Sun Valley, Calif.


The commanding presence of Sony sound


Now enter the world of the professional. With the Sony Sterecorder 600, a superbly engineered instrument with 3 -head design, you are master of the most exacting stereophonic tape recording techniques.

Professionat in every detail, from its modular circuitry to its 3-head design th is superty 4 -track stereophonic and monophonic recording and playback unit provides such versatile features as: vertical and horizontal operating positions - sound on sound m tape and source monitor swilch full \(7^{\prime \prime}\) reel capacity - microphone and line mixing magnetic phono and FM stereo inputs 2 V.U. meters hysteresis-synchronous drive motors dynamically balanced
capstan flywheel automatic shut off pause control and digital tape counterall indispensable to the discriminating recording enthusiast. Less than \(\$ 450\), * complete with carrying case and two Sory F-87 cardioid dynamic microphones.


\footnotetext{
Sony tape recorders, the most complete line of quality recording equipment in the world, start at less than \(\$ 79.50\).
For literature or name of nearest dealer, write Superscope, Inc., Dept. 58, Sun Valley, Calif. In New York, visit the Sony Salon, 585 Fifth Avenue.
}

\title{
You get more for your money from NRI-
}

\section*{than from any other home-study Electronics, Radio-TV school}

school. Shown below is a dramatic, pictorial example of training materials included in just one NRI Course. Everything you see pictured below is included in low-cost NRI training. Other major NRI courses are equally complete. Text for text, kit for kit, dollar for dollar-your best homestudy buy is NRI.


\section*{GET A FASTER START WITH NRI'S NEW EXCLUSIVE ACHIEVEMENT KIT}

The day we receive your enrollment application we mail out your Achievement Kit. It contains everything you need to make an easy, fast start in the Electronics training of your choice. This attractive, new starter kit is an outstanding, logical way to introduce you to homestudy as NRI teaches it . . . an unparalleled example of the value of NRI training . . . training that is backed up by a dedicated staff and the personal attention you should expect of a home-study school. It is your first of a number of special training aids carefully developed by the NRI laboratories to make your adventure into Electronics absorbing, meaningful. What's in the Achievement Kit? Your first group of lesson texts; a rich vinyl desk folder to hold your study material; the industry's most complete Radio-TV Electronics Dictionary; valuable reference texts; lesson answer sheets; pre-addressed envelopes; pencils; pen; engineer's ruler-even postage. No other school has anything like the NRI Achievement Kit.

LEARNING BECOMES AN ABSORBING adventure with mbi training kits

Electronics comes alive with NRI training kits. What better way to learn than by doing it? That's why NRI pioneered and perfected the "home lab" technique of learning at home in your spare time. You get your hands on actual parts and use them to build, experiment, explore, discover. NRI invites comparison with training equipment offered by any other schocl. Begin NOW this exciting program of practical learning. It's the best way to understand the skills of the finest technicians-and make their techniques your own. Whatever your reason for wanting to increase your knowledge of Electronics . . . whatever your field of interest . . . whatever your education . . . There's an NRI instruction plan to fit your needs, at low tuition rates to fit your budget. Get all the facts about NRI training plans, NRI training equipment. Fill in and mail the attached postage-free card tocay. No salesman will call. NATIONAL RADIO INSTITUTE, Washington, D.C. 20016.

IN ELECTRONICS TRAINING


(continued from page 16)
\begin{tabular}{|c|c|c|c|}
\hline ABBREVIATION & ELECTRONIC TERM & MULT & multiplier \\
\hline & & MVB & multivibrator \\
\hline CKT BRKR & circuit breaker & NBFM & narrow-band FM \\
\hline coax & coaxial & NC & neutralizing capacitor \\
\hline COM & common & N.C. & normally closed (switch or \\
\hline COND & conductor & & relay) \\
\hline CONN & connection & NE & neon \\
\hline CONT & control & NEG & negative \\
\hline CONV & convergence, converter & NET & network \\
\hline counter emf C-R & counter electromotive force cathoderay (tube, etc.) & N.O. & normally open (switch or relay) \\
\hline CRO & cathode-ray oscilloscope & \(n-p-n\) & negative-positive-negative \\
\hline CRT & cathode-ray tube & & (transistors) \\
\hline CT & center lap & OSC & oscillator \\
\hline cW & continuous wave & P & plate \\
\hline D & diode & PA & public address \\
\hline db & decibel & PC & photocell \\
\hline dc & direct current & PERM & permanent \\
\hline dcc & double cotton covered (wire) & pf & picofarad ( \(\mu \mu \mathrm{f}\) ) \\
\hline DC REST & direct current restorer & phone(s) & telephone, headphones \\
\hline DEFL & deflection & PHOTO MULT & photomultiplier \\
\hline DEMOD & demodulator & pix & picture (TV) \\
\hline DET & detector & PL & pilot lamp \\
\hline df & direction finder & PM & permanent magnet (speaker) \\
\hline DIELEC & dielectric & PM & phase modulation \\
\hline DIFF & differentiator & \(p \cdot n \cdot p\) & positive-negative-positive \\
\hline DISCH & discharge & & (transistors) \\
\hline DISCRIM & discriminator & POS & positive \\
\hline dpdt & double pole double throw & POT & potentiometer \\
\hline dpst & double pole single throw & PP & peak-to-peak \\
\hline dsc & double silk covered (wire) & PPI & plan-position indicator \\
\hline & dynamic & & \\
\hline dx & distance & pps & pulses per second \\
\hline & emitter (of transistors) & preamp & preamplifier \\
\hline E & potential & prf & culse repetition frequency \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{E (sometimes V in}} & PRI & primary \\
\hline & & PT & phototube \\
\hline grams) & voltage & Q & reactance-resistance ratio \\
\hline ECO & electron coupled oscillator & Q & transistor \\
\hline ELEC & electric; electrolytic & QUAD & quadrature \\
\hline ELECT & electrode & & resistance (resistor) \\
\hline emf & electromotive force & RCDG & recording \\
\hline ENAM & enameled (wire) & RCDR & recorder \\
\hline EQUIV & equivalent & RECT & , ectifier \\
\hline ERASE HD & erase head & REG & regulator \\
\hline ERP & effective radiated power & regen & regeneration \\
\hline EXT & external or extension & & radio frequency \\
\hline F (f as suffix) & farad(s) & RFC & radio-frequency choke \\
\hline f, FREQ & frequency & RFT & radiofrequency transformer \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{FIL (F) in tube \({ }_{\text {filament }}\)}} & rms & root mean square \\
\hline & & RY & relay \\
\hline FM & frequency modulation & S & switch \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{FOLL
\(G\) (in tube dia-}} & scc & single cotton covered (wire) \\
\hline & & SCR & silicon controlled rectifier \\
\hline grams) & grid & sec & econd \\
\hline GCA & ground controlled approach & SEL (RECT) & selenium (rectifier) \\
\hline GDO & grid dip oscillator & SEP & separator \\
\hline GEN & generator & SG & screen grid \\
\hline GND & ground & SIG & signal \\
\hline h & henry (ies) & SLD & solenoid \\
\hline HD & head & spdt & single pole double throw \\
\hline hf & inigh frequency & & (switch, etc.) \\
\hline HORIZ & horizontal & SPKR & speaker \\
\hline HTR (H) & heater & spst & single pole single throw \\
\hline 1 & current & & (switch, etc.) \\
\hline IC & internal connection (on tubes) & SSB
ssc & single sideband single silk covered (wire) \\
\hline i.f. & intermediate frequency & SW & shortwave, switch \\
\hline \multirow[t]{2}{*}{IFT} & intermediate frequency & SWR & standing wave ratio \\
\hline & transformer & sync & synchronization \\
\hline ILS & instrument landing system & T & transformer, trimmer \\
\hline IM & intermodulation & TELEG & telegraph \\
\hline INT & integrator & TERM & terminal \\
\hline INV & inverter & tptg & tuned plate tuned grid \\
\hline ips & inches per second & TRANS & transformer \\
\hline K & thousand & trf & tuned radio frequency \\
\hline \(k\) & cathode (on tubes) & TVI & television interference \\
\hline kc & kilocycle & uhf & ultra-high frequency \\
\hline kw & kilowatt & \(v\) & volt(s) \\
\hline \(\lambda\) (Iambda) & wavelength & \(\checkmark\) & tube \\
\hline , & inductor (inductance) & va & volt-ampere \\
\hline L & coil & vac, vde & volts ac, dc \\
\hline If & low frequency & VAR & variable \\
\hline LIM & limiter & VC & voice coil \\
\hline LIN & linearity & VERT & vertical \\
\hline \(\mu\) (mu) & micro- (one-millionth) & VFO & variable frequency oscillator \\
\hline \(\mu \mathrm{f}\) & microfarads & vhf & very high frequency \\
\hline \(\mu \mathrm{h}\) & microhenry(ies) & VIB & vibrator \\
\hline \(\mu \mu \mathrm{f}\) & see pf & VOL & volume \\
\hline \({ }_{M}^{\mu \mathrm{sec}}\) & microseconds & VRM & volt-ohmmeter
voltage regulator (tube) \\
\hline M & million & vtum & vacuum-tube voltmeter \\
\hline ma & milliámpere(s) & vu & volume unit(s) \\
\hline max & maximum & w & watt(s) \\
\hline mc & megacycle(s) & X & reactance \\
\hline meg & megohm
millihenry(ies) & \({ }^{\text {xtal }}\) & crystal
impedance \\
\hline mike & microphone & & _-END \\
\hline
\end{tabular}

\section*{need} reliable service data?


\section*{Free sempormomem unsst index to РНоtofact!}
your handy guide to the world's finest electronic service data

\section*{covers over 58,000 listings of:}

\author{
- TV Receivers - Home \& Auto Radios \\ - Phonos \& Hi-Fi - Tape Recorders \\ - CB Radios \\ - Record Changers
}

Send today for this valuable 72 -page guide covering virtually every model of home-entertainment electronic equipment produced since 1946! Helps you locate the proper PHOTOFACT Folder to quickly solve any service problem in any model. PHOTOFACT provides everything you need in complete, uniform style for quick, effective repairs: Famous Standard Notation Schematics packed with the service details you need; Full Photo Coverage of all chassis views; Complete Replacement Parts Lists; Tube Placement Diagrams; Alignment Instructions; CircuiTrace \({ }^{(1)}\) for printed boards; Disassembly Instructions; Dial Cord Diagrams; Changer and Recorder "Exploded Views"-plus dozens of other great features. Send ccupon for your FREE copy of the latest PHOTO. FACT Index to the service data you need!

Take the Right Step to Time-Saving, Profit-building Servicing... See your Sams Distributor for details on an Easy-Buy PHOTOFACT Library and Standing Order Subscription.

NOW! INDEX INCLUDES MODELS COVERED IN THE PHOTOFACT SPECIALIZED SERIES MANUALS...

Lists all models now covered in the PHOTOFACT Specialized Series: Transistor Radios, Auto Radios, CB Radios, and Tape Recorders-absolutely complete!

HOWARD W. SAMS \& CO., Dept. REF-8
4300 W. 62nd St., Indianapolis, Indiana 46206Send FREE Photofact Index
\(\square\) Send full information on Easy-Buy Plan and Standing Order Subscription
My Distributor is
Shop Name
Attn.
Address.

City \(\qquad\) Zone \(\qquad\) State

\title{
NW \\ INTERNATIONAL'S NLIN EXECUTIVE 750-H CITIZENS BAND TRANSCEIVER ... FOR people who expect the veril best*
}

The International Executive \(750-\mathrm{H}\) introduces a transceiver that is quickly adaptable to all types of mobile or base installations.
The remote console, which is normally installed under the auto dash, has a new companion speaker console. It may be combined with the remote unit or mounted separately. The speaker makes a perfect base when the remote console is used on a desk. Provision has also been made for adding an S/meter.**
What's more, the Executive \(750-\mathrm{H}\) is loaded with extra performance features; such as, 23 -crystal controlled channels, illuminated channel selector dial, a new speech clipper, increased selectivity, new connections for easy cabling.
The Executive \(750-\mathrm{H}\) is complete with crystals, mounting rack for the remote console, trunk mounting rack for the set, push-to-talk microphone, power cable kit, plus all necessary connecting cables. Operates on \(6 \mathrm{vdc}, 12 \mathrm{vdc}\), or 115 vac .
Your International dealer has a liberal trade-in plan. Step up to an Executive 750-H today!


The Executive 750-H consists of three units: (1) the remote console, which turns the set (in the trunk) on or off, adjusts speaker volume and squelch; (2) the speaker console; (3) the main set which houses all other transmitting and receiving components.
*Performance-Construction-Design-Components
**S/meter available as an accessory item
WRITE TODAY FOR OUR 1964 CATALOG.


IB NORTH LEE OKLAHOMA CITY, OKLA.

\author{
Hugo Gernsback, Editor-in-Chief
}

\title{
MEDICAL ELECTRONICS
}

\author{
... An Immense Field Beckons the Researcher . . .
}

THE FOLLOWING partial reprint is taken from our July 1950 editorial. Most of it is probably as true today as it was then. What prompted the reprint can be found in our last month's editorial, "Electronics" Future."

It is particularly addressed to the more than 67,000 professional engineers, technical and production workers who have been laid off recently because of Government cutbacks and cost-cutting programs. Many or all of these workers, mostly electronic teclnicians, anxious to make new connections, could not do worse than re-establish themselves in a vast new field: medical electronics. Many laboratories, large hospitals and other institutions always have openings for trained electronic men anxious to explore this new technology field. It can be very lucrative for the right men.

There is perhaps no field today which requires bio-electronic applications more urgently than medicine. Medicine is as yet not an exact science, but rather an art. The medical man still falls back upon most of his five senses when he makes a diagnosis. His trained eyes see many tell-tale signs: his ear evaluates heart. chest and lung sounds: his nose can often recognize certain diseases, such as measles, scarlet fever and others that have characteristic odors. Old-time practitioners touched the backs of their patients' hands with the tip of their tongue-the salinity, the acidity, etc., of the skin frequently was a good index of certain diseases.

Methods such as these seem crude and archaic in the electronic age. Yet the human body is a most complex machine, with most of its machinery hidden and inaccessible. Its electric organs are delicate and deep-seated. Its chemical plants are distributed widely throughout the body and are often difficult to contact. The body's heating and cooling plants are still not understood too well. The blood circulatory system-while better explored-still holds many unsolved problems.

Thousands of medical books covering every part and function of the human body cannot begin to more than suggest the extent of its complexities. This is particularly true of the vast field of diagnosis.

Electronically the human body can be compared to a scaled up radio or television receiver, with only a few exposed connections. The service technician parallels the physician who now is called upon to locate the hidden defect. But neither service technician nor the physician today has a universal "analyzer" that can locate all faults or troubles throughout a radio or TV set. or the vast and complex domain of the "sealed-unit" human machine.

There no longer remains any valid reason why electronic science should not give the medical practitioner a bio-logical-electronic analyzer that could in time diagnose any disease, any dysfunction. The oscilloscope, the amplifier, the millivoltmeter and microammeter, the sensitive thermocouple and dozens of other electronic instruments can all be combined into a portable bio-analyzer in the future.

Even now, medical science uses thermionic amplifica-
tion plus a graphic galvanometer for recording heart impulses, brain waves and uterine contractions. The photoelectric cell has already been made an indispensable part of biochemical technique: the colorimeter is calibrated to read grams of haemoglobin per hundred cubic centimeters of blood directly, or milligrams of nitrogen . . . or creatine or uric acic. Heart sounds are accurately analyzed on a tape: murmurs are measured to a hundredth of a second. It is only a question of time until these present uses and others added are all integrated into one unit.

Once such an instrument has been evolved and perfected and the practicing physician has learned how to master its complexities, medicine will have a valuable tool to combat disease effectively. There will then no longer be any guesswork in diagnosis.

The doctor then can make his blood tests, his blood count on the spot-without puncturing the patient's skinand without the necessity of going to a technician who specializes in such work. He will take his cardiogram on the spot. He will know the exact status of an appendix and will know if it is to he excised or if it can be treated. Puzzling rises of temperature of a patient can be tracked down fast -hidden abcesses for instance can be located by local temperature variations. Usually the site of an internal abcess has a higher temperature index than other parts of the body. Hundreds of similar examples could be cited to prove that bio-electronic diagnosis is possible and that undoubtedly it will be commonplace in the not too distant future.

Much research will have to be done in the meanwhile to make it an accomplished fact. Electronic and medical research teams will have to pool their joint talents and knowledge in collaboration with instrument technicians to evolve a medically acceptable bio-analyzer. Finally doctors will have to be trained to use the instrument and to evaluate all its ramifications. Admittedly this will take time, effort and money but it will be done.

\section*{What About the Immediate Future?}

For many years. editorially and otherwise, the present writer has been talking about a replacement for (or a new or better addition to) our present X-rays. Good as they are. X-rays are at best only shadowgraphs. They give only vague outlines of our major organs. Today, the heart, the lungs, the kidneys, the adrenals. the liver, the internal sexual organs, the appendix and others must always be interpreted by qualified technicians. Disease does not always show. Incipient cancer rarely shows up clearly.

In the Christmas 1953 issue of the writer's Forecast magazine, he said:
"In the future, the medical technician will actually see all your interior organs and will watch them work.
"This will be done by a device placed directly against your body. It will be a light source, several times as powerful as the sun-but it will be cold light. The light source will be Continued on page 74

\section*{PART ONE:}

Two kinds of rotators and how they work, and where to look for trouble in them

\title{
HOW TO REPAIR ROTATORS
}

\section*{By HOMER L. DAVIDSON}
many radio-ty service technichans just won't repar or install antennas or rotators. They quote many reasons but I suspect the main one is that it is just too much work. Here's an illustration from a distributor salesman who calls on us every Friday afternoon.

He had just called on another shop. Its owner was standing looking out his window and worrying about business. He hadn't had one service call all morning. His bench man was sitting and hoping for \(50^{\circ}\) clock 10 come so he could go home. The shop owner was wishing that he had chosen another trade. At that moment the telephone rang and the helper answered it. A customer wanted his rotator fixed: his antenna was stuck in the wrong direction for the channel he
wanted to watch. The helper said. "We don't do any antenna or rotator work," and hung up the phone. He sat down again on his stool to do nothing. The salesman asked the service man why he didn't do antenna and rotator work. The answer was short and simple: No money and a lot of hard work.

Yel I know for a fact that the antenna repair business is good. Money can be made in it. And the help is kept busy. keeping that overhead down. Only a few things mark up to forty to fifty percent. Antenna and rotator work do if labor is properly charged for.

This article deals strictly with rotator repair. Insurance people are requiring that antennas and rotators be repaired if possible. If not, they can be replaced with new ones. Insur-


Fig. 1 -CDR manual rotator. Control unit is indoors, rotor unit on antenna mast. Red and blue codes follow manufacturer's designation.

Fig. 2-CDR automatic rotator.



Fig. 3-Worn direction-sensing rheostat being removed,


Fig. 4-Rheostat wiper blade is electrically common to case and frame.


Fig. 5-Screwdriver here points to pulsing switch in automatic unit. Contatts are open.
ance work is sure money, if properly handled.
A rotator installation actually consists of three units: the rotator control hox, rotator motor, and interconnecting rotator wire. Trouble in any of the tinree will keep the rotator from turning.

Fig. 1 is a schematic diagram of a manual rotator The ac line voltage feeds to one side of a ganged switch. In most rotaters this suitch is held down by the operator. Press down on the right-hand side, and the rotator turns clockwise. Press down on the left side, and the rotator turns counterclockwise. The switch transfers the supply to one side or other of the molor winding. reversing the field and direction of rotation.

A potentioneter in the motor assembly turns with the motor and acts as a direction sensor. Wire 4 is a return wire to the meter direction indicator and is in series with a small rheostat which is used to align the meter with the corresponding direction of the motor unit. The rhcostat and wiping blade are shown in Figs. 3 and 4.

Fig. 2 is a diagram of an atomatic rotator. This kind stops automatically at a preset point on a dial. The operator turns the direction knob to the direction he wants. The rotator turns to that direction and stops. A pulsing solenoid relay, pulsing switch and direction knob are basically the only differences between a manual and an automatic rotator.

The direction indicator knob which operates SI is turned to the desired direction. S 4 is a pulsing switeh and is turned by the small rotator motor. (This switch is pointed out in Fig. 5.) When S1's and S2's contacts are closed, voltage is applied to the stepping or pulsing solenoid in the control unit. The solenoid clicks or pulses until the desired direction is reached and switch S 2 opens This removes the 117 volis ac on the primary side of the power transformer. The relay stops pulsing and the unit shuts off. If the direction indicator knob is turned in the opposite direction, the motor reverses and again pulses until the desired direction is reached. Fig. 6 shows the pulsing relay

A rotator can be checked easily by substitution and continuity testers. An ohmmeter or light bulb and battery will check the continuity of the wiring and rotator. If the control box appears to be bad, substituting a new one will clear up the situation. Check the continuity and try substitution before


Fig, 6-Pencil shows stepping relay solenoid.

Fig. 7-Inside nonautomatic rotator control box.



Fig. 8-Back of meter assembly (manual type).
Fig. 9-Manual unit comes apart easily. Curved strips in foreground are spring clips that hold meter to case.

you climb up on the roof. If the rotator motor is bad. it must be dismounted from the antenna mast and repaired or replaced.

The rotator itself consists of a motor and control box. Let's take an Alliance TI2 control box and examine possible troubles, Most likely are a defective capacitor. burned-out transformer. open meter and a cracked control box. Fig. 7 shows the starting capacitor. power transformer and small rheostat. In Fig. 8 the back of the meter assembly is illustrated. A broken neter case is being replaced in Fig. 9 .

Four bolts in the back can be removed to let the control unit slip out of its case. (heck continuty of the meter and rheostat. Measure the transformer secondary voltage. It should be belween 25 and 35 with the meter connected. Parts are available at most local distributors who sell rotators.

As an example. let's take a case where the meter will not read but the rotator turns. The meter is definitely bad and must be replaced. First unsolder the red, black and brown wires from their components. Pull back the two spring clanips at the back of the meter and remove the meter. Replace the meter assembly, spring the clips back into place and resolder the three color-coded wires. That's all.

Rotator repair is quite simple: there are only a few parts to replace. Instructions are usually included with replacement conponents by the manufacturers.

Next month we'll discuss troubleshooting. repairing and replacing defective rotator motors, and say some words about wind damage insurance for rotator assemblies.

TO BE CONTINUED

\section*{Booster Triples Radio Output}

\section*{By HARRY E. STOCKMAN*}

YOU CAN BUILD THIS SIMPLE GADGET IN an hour, and then sit back and marvel at the improved performance of your little transistor portable. This antenna is a parasitic device: it uses no tubes, transistors or batteries, and is not connected in any way to the radio.

Construction is shown in the drawing below. Though only one turn is shown. you will need about 13. Use No. 24 enamel or double-cotton-covered magnet wire. The loop is held upright by two \(3 / x\)-inch wooden dowels mounted in a vertical "V". The 350 -pf variable is connected across the loop. Its value is not critical (a 365 -pf variable can be used just as well).

To use the antenna, place your transistor portable so that its built-in ferrite-rod intenna is coaxial with (that is. "pokes through") the parasitic antenna. Turn on the radio and tune in a station (a weak or moderately weak one will show the greatest improvement).
*Professor of electrical engineering. Lowell Technological Institute, l.owell, Mass.

Now tune the parasitic antenna's capacitor until you hear an increase in volume. It should be very noticeable.

For skeptics. some explanation is in order. In ordinary ferrite-rod anten-

nas. the length-to-diameter ratio is important to sensitivity. Because of space limits. this ratio is often well below what it should be, and a small set often doesn't perform as well as it might. Sometimes, too. low-Q ferrites are used. The parasitic antenna's function is not very different from that of any parasitic element on, say', a Yagi antenna. It helps intercept the signal, and its energy is coupled into the ferrite antenna by a kind of transformer action.

Measurements show that the atudio voltage output from a particular station increases about three tines when the parasitic antenna is used. though the exact improvement depends on the design of the transistor portable. Smaller antennas will work. too. One half the size of the one shown will still improve reception noticeably. A bigger one. on the other hand. gives even better results.

You can expect yuite a bit of selectivity from this arrangement. to the point where sideband cutting produces distortion and loss of highs. In that case. detune the parasitic antenna slightly.

Directivity of this system is quite a bit better than that of a ferrite-rod antenna alone. If you mount this assembly on a rotating table, you have a dandy direction finder!

\section*{The 1960's-}

\title{
Superconductivity's \\ \\ Decade?
} \\ \\ Decade?
}

\author{
By ERIC LESLIE
}

AS THE 1940'S WERE MARKED BY THE transistor: the 50 's by discovery of the maser-laser. so may progress in the 1960 's be linked with the phenomenon of superconductivity. Already it is suggested that it may be instrumental in "achieving an exotic generation of highperformance computers, microwave radar and communications equipment. magnets. scientific instruments, highcurrent storage batteries. magnetohydrodynamic power supplies, and propulsion systems for outer space." The fact is that superconductivity is still so new in application that. like the laser in the 1950 s. its possible applications are still largely unknown.

Unlike the laser and the transistor, which were absolutely new when brought to public attention, the principles of superconductivity have heen known for many years. In 1911, Kammerlingh Onnes, experimenting with the production of extreme cold. discovered that certain metals lost all their resistance when lowered to the temperature of liquid helium ( \(4^{\circ} \mathrm{K}\) approximately).

Not much use was made of this phenomenon for many years, for the simple reason that the magnetic field set up by any great amount of current through the superconductor would cause the superconductivity to disappear immediately. In recent years new superconductive materials. "hard superconductors". have been found that will work at higher temperatures and higher currents.

A niobium-tin mixture has the greatest ability in this direction. but until recently was so brittle that it could not be made into usable conductors. A number of processes have been devel-


When this superconducting magnet "went normal" (out of superconductivity), fantastic power of magnet pleated heat-absorbing copper sheet around center of magnet winding. Magnet still worked after that! Light-colored flat ribbon above and below accordion-pleated copper is niobium-tin alloy winding, which becomes superconducting at low temperatures. Wrinkled flat strips at top of winding form are connecting leads.
oped for using the niobium-tin compound. Possibly the most successful is that of Dr. J. J. Hanak, of RCA Laboratories, who evaporates niobium stannide on a stainless-steel ribbon.

A magnet made of ribbon produced by this process was demonstrated at the David Sarnofl Research Laboratories recently. A field of 107 kilogatuss makes it one of the strongest magnets of the world: yet it is only about 6 inches in diameter and uses a fantastically small fraction of the power required by other magnets of similar type.

At the same demonstration. RCA showed a microwave amplifier that uses superconductivity to work in the gigacycle frequency range, a superconductive computer memory and a high-speed electronic switching system usable in computers.

All these devices, of course, depend on operating at extremely low temperatures. Other companies are developing the necessary "refigerators" which will make it possible to handle such cryogenic devices efficiently and economically.

END

Detail of RCA's mighty supermagnet shown in the photo.


\section*{SPECIFICATIONS OF THE RCA} 107-KILOGAUSS MAGNET
\begin{tabular}{lr} 
Weight & 26 pounds \\
Total length \(\mathrm{Nb}_{;} \mathrm{Sn}\) & 4,450 meters \\
Total turns & 15,370 \\
Magnetic field in 1 in. bore & 107 kilogauss \\
Magnetic field in 3.4 in. bore & 56 kilogauss \\
Stored energy & 20,500 joules \\
Inductance & 6.8 henrys \\
Magnetic pressure & 7,000 psi
\end{tabular}

HOME-MADE FOOT SWITCH AND PUSH-TO-TALK MIKE TURN LOW-PRICE
PORTABLE TAPE RECORDER INTO GOOD DICTATING MACHINE


\author{
By WILLIAM D. REXROAD
}

THOSE WHO HAVE: HAD AN OPPORTLNITY to use dictating machines have found them tremendous time-savers. Unfortunately, their high cost prevents them from heing used more widely by businessmen to write letters, by students for dietating papers and by many others whose valuable time could be saved by speaking into a microphone instead of writing. An inexpensive Japanese tape recorder can he made into a good dictating machine for less than \$25. The


Fig. 1-Typical motor and power switching circuit of miniature portable recorders. Two 1.5 -roll cells are paralleled for forward drime, in series for fastor rewind.
modified recorder has all the features of a much more expensive commercial counterpart.

Just what is a dictating machine? Basicatly, a recording device-a tape. wire or dise recorder. More than that. it must include a hand-held microphone with a push-to-talk switch, and some provision for transeribing the information from the recorder to paper. That usually consists of an carphone for the secretary. and a foot switch so that the recorder may be stopped and started conveniently while it is being played. The unit should be small and battery-powered so that it may be carried easily on trips or business calls. and used without plogging it into an ac outlet.

Several brands of Japanese-made tape recorders on the market today are small. lightweight, hattery-powered. and. most important. inexpensive \((\$ 15\) to \$20). Such a recorder is a natural as the foundation of a cheap but versatile dietating machine. Your electronic junkbox will probably supply most of the parts necessary for the modification, which consists of rewiring the motor circuit to provide remote on-off control, adding a switch to the microphone and construct-


Fig. 2—Remote switch foot pedal or on mike) starts and stops recorder commeniently.
ing a foot switch. If you have to buy the parts, they will add less than \(\$ 5\) to the cost of the unit.

\section*{Where to begin}

Fig. 1 is a diagram of the motor cireuit in a typical Japanese tape recorder. In the FORWARD position of the function switch, the two 1.5 -volt cells are in parallel to drive the motor. and a 9 -volt battery is connected to the electronic circuitry. In the off position, none of the batteries are connected. In the REVERSa position. the 1.5 -volt cells are connected in series to rewind the tape at a higher speed. and the 9 -volt battery is disconnected from the electronics.

The motor eircuit must be modified to control the motor remotely only when the switch is in the FORWARD position. The remote on-oft switch should be completely out of circuit in the STOP (or OFF) and rewinn positions. Fig. 2 shows how the motor circuit is rewired to provide these features. The leads to the Forwarn contacts of the switch are
motor control wires to four others. I used pins 6 and 7 for the microphone leads. and pins 1 through 4 for the motor control wires. This completes the modification of the recorder.

Two methods of remotely controlling the recorder are required: a switch on the microphone for dictating and a foot switch for when the tape is being


Fig. 3-Dimensions: and details of the foot-pedtal switch. It can he modified to suit any similar witch and whatever parts you have on hand.
broken and brought to a connector mounted on the recorder. A dpst switch in series with these leads provides remote on-off control when the function switch is in forward. and does not affect the control circuit in OFF or REWIND.

Any small connector with at least six pins can be used to terminate the motor control wires. I used an ordinary seven-pin miniature tube socket installed in the hole formerly occupied by the microphone jack. The original hole is just the size for the screw of a \(5 / 8\)-inch chassis punch. If you don't have such a punch, you can file or drill out the hole to \(5 / 8\)-inch diameter. Regardless of the kind of connector you use and the size hole you make-or how you make it -protect the parts in the recorder from metal chips and filings.

After installing the connector, solder the leads from the original microphone jack to two of the pins, and the
transcribed. In both cases, a two-pole single-throw (dpst) switch is used.

The foot switch construction is shown in Fig. 3. A momentary-contact pushbutton switch is mounted in a housing so that it can be operated conveniently by the foot control. The housing is constructed of scrap pieces of pine and \(1 / 4\)-inch Masonite. A small piece of sheet aluminum, which acts as a foot pedal. is attached to the housing with a small hinge, as shown in the illustration. Rubber feet prevent the foot switch from slipping.

The cable from the foot switch should be at least 5 feet long. It consists of four wires, no smaller than No. 26, enclosed in a piece of slecving, which improves the appearance of the cable. The free end terminates in a plug which mates it with the connector on the recording unit. I used a seven-pin CinchJones plug which mates with a seven-pin

tuhe socket. To keep the wires from breaking off the plug. and to provide a means of gripping it, it was encapsulated in epoxy resin. I made a mold which consisted simply of concentric holes drilled in a block of plastic (Fig. 4). I filled the mold with epoxy resin (the type used in automobile repair kits will do nicely) and allowed it to eure.

A microphone with an on-off switch may be obtained in several ways: you can buy a commercial unit, or tape a switch to the microphone provided with the recorder. I bought an inexpensive crystal microphone cartridge and slide switch and molded them into an integral

FILL HERE WITH EPOXY RESIN


Fig. 4-Author's mold for plug "handle". Wide steeve from phome jacks like Mallory 75 or 76 can also be adapted.
microphone unit. Fig. 5 shows the details of the unit I made. The mold was constructed by soldering pieces of thin sheet copper together. The dpst slide switch and mike cartridge were mounted in it, the cable attached, and the mold was filled with epoxy resin and allowed to curc. The opposite end of the cable was terminated with a plug identical to that used on the foot switch.

If it seems like too much trouble to mold plugs and microphone housings, a different type of connector on the recorder will do every bit as well. For instance, a six-terminal Jones connector type S306AB and two mating plugs (Jones P306CCT) will solve the cable problem adequately. You can mount the slide switch on the microphone in other ways, too.

\section*{Using the Little Dictator}

To use the dictating machine, simply plug in the microphone unit, turn the
The Little Dictator set up for transcribing a recorded tape. Earpicce facilitutes transcription in noisy locutions.
function switch of the recorder to FORWARD and the play-record switch to record. Turn the mike switch on to dictate. off when not talking. One precaution: if you wish to back up and review what you have said, be sure the PLayRECORD switch is in the Play position before rewinding the tape. If you don't do this, all that you have recorded will


Comverted recorder is no bigger than original machine: foot switch doesn't hate to go along. since transcription will be done at home or office. Machine carries easily in bricfoctese or suitcoses.
be erased.
When transcribing, the typist disconnects the microphone and connects the foot switch. The foot switch is then depressed and released alternately, allowing the information on tape to be transcribed a few words at a time until the entire tape has been reproduced. No unusual talents other than the ability to type are required of the person doing the transeribing. It is convenient for the transeriber to use the ear plug rather than to listen to the tape via the speaker; surrounding noises are less distracting.


Fig. 5-Microphone anit is incxpensive crestal mike element with dpst witch, mohled (or otherwise fastened) together. Depending on inpmt impedance of recorder's amplifier, crwstal mike cartridge may have to he wired with single-conductor flexible shielded cable.

\section*{Tape recorder}

1 dpst pushbutton switch
1 dpst slide switch
crystal microphone carfridge (Burstein. Applebee
Connectors (see text)
Mountings and hardware (see text)
Because tape speeds are not closely controlled on these little machines. you must usually play a tape on the same machine you recorded it on. Sometimes you can play a tape on another machine of the same make and model.

Once you overcome a natural shyness toward writing letters or reports by microphone rather than with a pencil or pen, the dictating machine becomes a valuable time-saver, and you will find yourself using it everywhere!

END

\section*{Adapter For Mike Connectors}


For many years, the well known Amphenol type mike connectors have been standard equipment on mike cables and audio amplifiers. Nowadays the miniature mike connectors promise to become just as popular for all kinds of transistor and miniature electronic apparatus. With both sizes of mike connectors in use. experimenters, audiophiles. service technicians and research labs need an adapter that will quickly and easily join the standard and miniature mike connectors.

To make such an adapter, you will need one Amphenol 75-MC1F mike connector or equivalent, one Switcheraft 5501 F Mini-Con miniature mike connector and a short length of insulated hookup wire.

The diagram illustrates the simple construction of the adapter very clearly. Remove the setscrews and pull out the cord-protecting springs in both connectors. Saw a piece about \(1 / 4\) inch long off the end of the large connector, then file down the barrel of the miniature connector so it is a snug fit inside the large connector. A short length of hookup wire, running lengthwise inside the adapter. connects the center eyelets of both connectors. Now sweat-solder the barrels of both connectors together so they can't slip or turn.


The adapter is is easy to use. Take the case of a mike cable with an Amphenol \(75-\mathrm{MC} 1 \mathrm{~F}\) or equivalent standard female connector and an amplifier with a miniature mike connector. Simply screw the small end of the adapter onto the panel connector. To couple the female connectors, unscrew the coupling ring from the connector on the cable and slide it back out of the way. Screw the cable connector onto the large end of the adapter to complete the hook-up. - Ari Trauffer


\section*{By CARL HENRY}

THOSE STAR ACTORS LIKE THE TRANSIStor and crystal diode usually hog the spotlight among the semiconductors. But several less publicized semiconductor devices are important in electronics today. Perhaps the oldest in common use is the thermistor. developed in its present form by Bell Telephone Latis in the carly 1940 s. Thermistors. made by sintering a ceramic material with a metallic oxide. can have a resistance variation with temperature of over ten million to one.

Why are thermistors important? Most items used in electronics have a positive temperature coefficient (their resistance increases with temperature). Since thermistors have a megative coefficient. they are widely used to compensate for the effects of temperature changes in circuitry. The photographs illustrate several types of thermistors. The wafers. discs and washers are usable to about 300 F.. while the bead types can be used to above \(600^{\circ}\).

Thermistors can he used in two ways. First, they can be placed in an ohmmeter circuit. The temperature of the thermistor's surroundings will determine its resistance. Fig. 1-a shows this


Giulton: Industries

Tinv bead thermistor is . 01 inch in diameter.

\section*{Watch Those Shifty Resistors!}

Most resistors hold their values over a wide range of circumstances. But some are designed to change resistance

d


C

b

type of circuit, which can be used to measure temperature. In a more sophisticated version (Fig. l-b), a bridge is used to indicate temperature more accurately. Figs. 1-c and l-d illustrate applications of these circuits. Fig. \(i-c\) is a crude control circuit to keep the temperature of an electric heater within a certain range. More accurate than a thermostat type of control, it is not as accurate as the circuit in \(1-\mathrm{d}\), which will keep a chemical solution at a precise temperature.

In the second type of circuit, the thermistor is allowed to draw enough current to raise its internal temperature to \(200^{\circ}\) or \(300^{\circ} \mathrm{F}\). It is then placed in contact with the variable to be controlled

Fig. 1-Thermistor applications. In Fig. I-a, direct temperature measurement; 1-b show's a bridge circuit with increased sensitivity. In \((c)\), a control circuit for heaters, fans, etc. Thermistor is monnted near heating or cooling element. Fig. I-d show's a potentially very sensitive temperaturechange detector.


Fig. 2-a-Liquid-level control with thermistor. Relay controls tank value. (b)Thermistor flow meter. Reference is mownted in brass block. System detects flow rates as low as . \(001 \mathrm{~m} / \mathrm{m}\) minute. (c)—gas analysig by registering change in specific heat of gas. (d)-Measuring vacumm; rate of heating and cooling will be different for the two thermistors until surrounding gas densities (degrees of vacutum) are equal.
or measured. In this manner it is possible to measure the liquid level in a tank, as in Fig. 2-a. The thermistor is placed at the point in the tank where the level is to be maintained. Since its internal temperature is high, its resistance is low. If the liquid in the tank rises, covering and
cooling the thermistor, the resistance will increase. This increase can turn off a relay or move an indicator. We can analyze the content of a gas, measure the flow of a liquid or a gas, and measure the degree of a vacuum, even down to 50 microns, in the same way. Fig, 2 illustrates the methods schematically.


The thermistor can also be used to give time delays of up to several minutes. For instance, a thermistor in series with a relay will not allow the relay to draw enough current to close until the thermistor has heated enough for its resistance to drop. The delay can be controlled by choosing thermistors of different characteristics.

Surge suppression is also possible with the proper thermistor. Also, several bulbs can be operated in series and when one bulb burns out, the others can continue at normal brightness. Merely put the proper thermistor across each bulb. When the bulb filament opens, the thermistor heats, its resistance drops and the circuit functions normally again.

Some bead thermistors have an external heater attached. By placing such a thermistor in the grid circuit of a vacuum tube, the gain of the tube may be varied


Fig. 4-Temperature/resistance characteristic of typical bead thermistor.
remotely simply by controlling the current in the external heater. The control carries only dc and is not critical; it can be located miles away without affecting the amplifier.

\section*{How is it used?}

Fig. 3 shows several typical electronic applications. In 3-a, the thermistor is used to temperature-compensate a type of electronic circuit that is especially important in de amplifiers and in oscillators. Transistors, in particular power transistors, change operating characteristics with changes in ambient temperature. Thermistors can be used to bias such circuits. With careful design, the same operating point can be maintained through a wide variation of ambient temperatures.

Fig. 3-b illustrates a method of stabilizing the output of an amplifier with a thermistor. Its resistance can be made to vary with the output in such a way as
to increase the bias or reduce the feedback if the output increases. Either a bead thermistor or an external-heater type is suitable. The major advantage of this kind of control is the wide range of frequency and amplitude it covers.

Since the thermistor decreases in resistance with heat, which in turn depends on the current through it. it can he used as a voltage regulator. Connect the same as a Zener diode or gas regu-lator-in parallel with the load. As voltage increases, the thermistor's resistance decreases and the current through it increases, restoring the original voltage. The main difference between this circuit and a conventional regulator is the time lag in the resistance change.

This is true of all the circuits mentioned so far. The resistance change of a thermistor is caused by a heating effect, which of course takes time. This may be unimportant in de control and audio circuits, hut severely limits the use of thermistors as control elements as the frequency increases. In general, the smaller the thermistor, the faster the response time.

Thermistors can be used in some circuits at higher frequencies, however. Fig. 3-c shows one such circuit. Here it is being used to measure power. The frequency can be anything from tow ac to microwaves. This is because we are measuring the heating effect of the power, and not the power itself. We can compare the heating effect of this power with the heating effect of dc. or as in 3-c we can use de to rebalance the bridge that the high-frequency power has unbalanced.

Using thermistors at audio frequencies makes possitle the simplest volume compressor-expander circuit. By oper-


\section*{Dise wafer thermistors.}
ating the thermistor on the negative-temperature-coefficient section of its characteristic curve (Fig. 4). it acts as a limiter. If the circuit is properly designed, there will be no waveform distortion.

\section*{Varistors}

Running thermistors a close second in importance is a component used in telephone circuits for years and years. but only now hecoming widely used in electronics: the varistor, a resistor whose value varies with voltage. Fig. 5 illustrates two typical telephone type varistors. As the voltage across one increases.


Rectangular wafer thermistors.
its resistance decreases. Fig. 5 also shows a typical varistor application, an intercom speaker circuit sometimes known as a "talkback" speaker. It is desirable in this type of circuit not to attenuate the low-level signal from the speaker to the amplifier. However, the high-level signal from the amplifier to the speaker must be controlled. especially if the speaker is used in an office.

This paradox is resolved by using a varistor. When the transmission is from the speaker to the input of the amplifier, the voltage is very low, and the varistor acts as a high resistance. This effectively removes the T-pad from the circuit. When the transmission is from the output of the amplifier to the speaker, the voltage is high. the resistance of the varistor is low, and the T-pad controls the volume of the speaker.

From this you can see that the varistor will function as an audio limiter. It operates much faster than a thermistor and. with the proper circuit design, the output is undistorted.

A second type of varistor is shown in Fig. 6. Commercially this is known as a contact protector. Fig. 6 also shows a typical circuit, with the varistors protecting the contacts on a relay. The theory is that the high voltage generated at the relay contacts causes the varistors to conduct and prevent arcing. Normally the voltage across the contacts is not great enough to cause the varistor to conduct. You can visualize this better if you think of the varistor as two silicon rectifiers back to back. Ordinarily they will not conduct. because the voltage across them is too low. When a high voltage is generated by the relay contacts, the inverse voltage of the diodes is ex ceeded. and they short out the spark.


Fig. 5—Two Western Electric telephonc trpe varistors, one of them "connected" so a diagram showing a trpical application (see text). Above, general ioltage characteristic of baristors.


Fig. 6-Varistor as contact protector, with circuit and characteristic curc.

\section*{Photoconductive cells}

The last of our "shifty" resistors is the photoconductive cell-a resistor that varies with light.

Two types of cells are in production now, cadmium sulfide and cadmium selenide. The selenide cell is faster-operating. peaks in the near infrared (690) millimicrons) and has a greater light-todark resistance ratio. The sulfide cell peaks near the same point as the human eye \((520 \mathrm{~m} \mu)\) and has a better temperature characteristic. Two other types, the cadmium telluride cell, which peaks
Three typical photocondictive cells.


Fig. 7-a-Direct measurement of light-circuit ased in many photographic exposure meters. (b) Greater sensitivity is possible with stage of amplification; cell controls transistor's bias. (c)A comparison photometer, to compare hrightness or luminosity of two objects or sources.


Fig. 8-Typical photoconductive cell characteristic.

\section*{Thyrite resistors}

A rather sophisticated type of varistor is the thyrite resistor, It is constructed of silicon carbide, sintered in a ceramic material. Thyrite is a kind of super varistor. Its resistance changes over a range in the order of 100.000 to 1 for voltage changes of 1,000 to 1 . A typical use for this "shifty" resistor would be in a pulsed sounding or echo circuit. In some of these circuits a pulse of 1,000 volts is transmitted to a transducer. The echo receiver must be connected to the transducer. A thyrite resistor across the receiver input prevents the transmitted pulse from damaging the sensitive receiver.
around \(800 \mathrm{~m}_{\mu}\), and the zinc sulfide cell, which peaks at about \(400 \mathrm{~m} \mu\), will \(\mathrm{ex}-\) tend the use of the cell into the ultraviolet.

Both the cadmium sulfide and cadmium selenide are ahout 1.000 times more sensitive than the older selenium photovoltaic cells. 1t is also clamed that the photoconductive cell is \(1,000,000\) times more sensitive than the photoemissive cell (phototube). Photoelectric exposure meters for photographers, auto headlight dimmers (doing away with the complicated photomultiplier circuits) and anemometers are but a few of the applications of these cells.

Fig. 7 illustrates some of the sim-
pler applications. The photoconductive cell is exactly what the name implies, a resistor that shifts or decreases in value with light level. Fig. 7-a shows a simple circuit to measure light. A similar circult is being used in several new photographic exposure meters on the market. A battery, the photocell and a meter are connected in series. As the light level increases, the resistance of the cell decreases, and the meter indicates more current. This type of circuit can be made so sensitive that you have to carry a flashlight to read the meter!

\section*{Lunar cells?}

Fig. 7-b shows an extremely sensitive relay control circuit. With the transistor to amplify the already high sensitivity of the photocell, it is possible to operate the relay on moonlight. The photocell supplies a hiasing current to the transistor. With an increase in light, the biasing current increases to the point where the collector current operates the relay.

Fig. 7-c shows the simple circuit needed to use these photocells for photometry. Such a circuit is accurate and sensitive enough to measure the blood pressure change of animals or humans by light transmitted through the finger or ear lobe. It may make the conventional sphygmomanometer obsolete.

Fig. 8 illustrates a typical conductive cell characteristic.

At this writing there are no accepted standards on photoconductors, but with increasing use this will undoubtedly be corrected.

END

\section*{Computer Solves Problem With 13,542 Variables}

A record is elaimed by Simeon E. Gordon, mathematician at ITT Communications Systems, Inc., Paramus, N. J.. for the solution of a problem that consisted of finding the shortest message route to be followed through a network of 62 switching points.

The difficulty was that the messages had to be routed over the network without interference. The problen, Gordon explained, was similar to determining the shortest route a motorist could follow over a road network to avoid traffic delays at 62 intersections.

The problen, which involved 2,002 mathematical equations, as well as more than 13,000 variables, required approximately \(61 / 2\) hours on the computer, and involved a technique known to computer mathematicians as linear programming.

1t took Gordon more than a year of spare-time work to develop the program which made it possible for the computer to solve the record problem. It is the first time, Gordon believes, that a computer has been utilized to solve a problem of more than 1.023 equations.

\section*{WHAT'S NEW}

MAGNETIC-FIELD-FREE ROOM was built to test space-bound instruments. Earth"s magnetic field and other stray fields played havoc in adjusting delicate instruments for work in outer space. Marshall Laboratories, Torrance, Calif., manufactures the enclosures from Allegheny Ludlum's Mumetal and Moly Permalloy alloys, both high-permeability metals. The "fluxroom" must be heat-treated for maximum effectiveness only after assembly, since alloys are strain-sensitive and lose their properties under mechanical stress. Room is approximately 8 feet each way, and mounted on turntable so it can rotate \(360^{\circ}\).


EDUCATIONAL TALKING TYPE'NRITER teaches 3- to 8 -year-olds to read and type. Dubbed "SLATE" (Stimulated Learning by Automated Typewriter Environment), Westinghouse-developed system lets child hear what he types. In "letter mode", pupil strikes key, sees letter printed and immediately hears it spoken. This teaches letter and punctuation-mark recognition. In "word mode", all keys are inactive except those that spell out words chosen by teacher. Machine responds to those only when pressed in correct sequence to spell word. Letters are pronounced one by one, then whcle word is spoken. "Sentence mode" requires correct spelling of entire sentence. Unit can be programmed to work in any language.

INFRARED-AIMED LASER RADAR tracks and ranges noncooperative airborne targets with terrific accuracy, according to ElectroOptics Group of Sperry Rand Corp. System consists of passive infrared tracker, laser transmitter and photomultiplier receiver. It can put laser beam on target to within . \(01^{\circ}\). Transmitter is pulsed ruby laser with \(375 \cdot \mathrm{kw}\) peak output; tracker is indium antimonide photodiode cooled in liquid nitrogen. System, hailed as 10 times as accurate as microwave trackers, permits narrower, more intense laser beams for higher signal-to noise ratios.


A LAMP? YES. A LOUDSPEAKER? YES. Decorative lampshade is \(360^{\circ}\) cylindrical electrostatic speaker for frequencies above about 400 cycles. Bass is reproduced by front-loaded cone type electrodynamic speaker in base. Acoustica Associates, Inc., manufacturer, quotes total frequency range as better than 40 to 25,000 cycles. Lampshade is translucent; less than \(1 / 4\) inch thick. System connects to ac wall outlet and to any hi-fi amplifier.


\title{
Transistors \& VOLTAGE MEASUREMENTS
}

Wrong voltages are good clues to transistor and circuit defects. Not the same as tubes, though by david r. anderson

HOW DOES AN OPEN BASE RESISTOR affect collector voltage? Can you tell what's onen in a transistor circuit by what"s happened to the element voltages? When you work with tuhes. you know that. if the plate voltage is the same as the supply voltage, the cathode resistor is almost certainly open. Why not learn the same diagnostics for transistor:"

Look at Fig. 1. a basic n-p-n trarsistor creuit. Here, the collector voltage will always be the most positive. while the emitter voltage will be the most negative. The base will he hiased so that it is slightly positive with respect to the emitter. and negative with respect to the collector.

The same relationship will hold true for the p-n-p transistor except that the polarity of the voltages will be reversed.

\section*{One battery supply}

For simplicity. two batterics are shown in Fig. I. Most practical circ_its use an arrangement like that in Fig. \(=10\) obtain the operating voltages from a single hatery.

In this arrangement, the collecter is connected to one end of the hattery and the emitter to the other end. The base is forward-hiased with respect to the cmitter by tapping off a part of the


Fig. 1-Voltage relationships in an n-p-n transistor. With p-n-p types, polarity is just reversed.


Fig. 2-Most practical circuits use single battery \(f\), all hiusing.
hattery voltage via R1 and R2. Polarity depends on whether an \(n-p-n\) or \(\mathrm{p}-\mathrm{n}-\mathrm{p}\) transistor is being used.

Most technicians find it casiest to measure voltages from ground to the various transistor elements. This is quite acceptable. However, when a power supply like the one in Fig. 2 is used. either end of the battery may be grounded.

Fig. 3-a shows an n-p-n transistor circuit with the negative side of the battery grounded. Fig. 3-b shows the same circuit with the positive side grounded. The voltages measured at the various elements differ not only in value. but also in polarity. depending on which end of the battery is grounded.

For instance. the collector voltage in Fig. 3-a measures \(L^{5} 5\) from ground. The collector voltage in Fig. 3-b measures -0.5 from ground. So be sure to note which end of the battery is grounded before you begin measuring.

\section*{Open base circuit}

Fig. 4-a shows the effect an open base circuit has on the operating voltages of an \(n-p-n\) transistor. The uncircled values show the normal operating voltages, while the circled values show the voltages measured from ground with the defect.

The collector voltage has increased. This happens hecause, with the base circuit open. the base-to-emitter hias disappears and the collector circuit stops conducting. When the collector is not conducting. no current flows through K4 and there is no voltage drop across it. As a result. the collector voltage rises to the battery voltage.


Fig. 3-Watch first to see which end of the battery is up! Magnitude and polarity of readings depend on where ground is.

Since the collector has stopped conducting, there is no appreciable current How through R3 and no voltage drop across it, either. Thus, the emitter voltage falls to zero.

The base voltage becomes zero becaluse it is no longer connected to its operating voltage.

In the p-n-p circuit of Fig. 4-b, an open base resistor has quite a different effect on the operating voltages. The collector voltage has dropped to zero, and the base and emitter voltages have risen to the full battery voltage.

This is because the battery polarity has been reversed. compared to the \(n-p-n\) circuit of Fig. 4-a. to supply the proper operating voltages for a p -n-p transistor. As a result, when you measure between collector and ground. you are reading the drop across \(\mathrm{R}+\). With the base circuit open, there is no drop across this resistor because there is no collector current, and you measure zero voltage.

When you put the prohes from ground to emitter, the battery voltage,


Fig. 4-Open base circuit with (a) n-p-n transistor; (b) p-n-p. Circled voltages are "defective". Voltages here are just examples; exact values depend on battery, transistor type and operatiom.


Fig. S-Open emitter in (a) n-p-n circuit; (b) \(p-n-p\)
less the drop across R 3 , is being measured. But since the collector circuit has stopped conducting, there is no drop across R3. As a result, you find the full battery voltage at the emitter.

The base circuit is open and no longer connected to its operating voltage. yet it measures the same voltage as the emitter voltage. This happens because a transistor has a low internal resistance between base and emitter, so the base rises to the emitter voltage.

\section*{Open emitter circuit}

Fig. 5-a shows the effect of an open emitter circuit. The collector stops conducting and there is no current in the collector circuit. This results in no voltage drop across R4. With no drop across R4, the full battery voltage appears at the collector.

The open emitter circuit also stops the slight current flow in the base-emitter circuit. When this current flow is stopped, the voltage at point A rises slightly, causing the base voltage to rise also (go more positive).

The open emitter, because of the low internal resistance of the transistor, then assumes the base voltage.

In Fig. 5-b a p-n-p transistor with

\section*{WHAT HAPPENS TO VOLTAGES WHEN ELEMENTS ARE OPEN}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline transistor type & \multicolumn{2}{|l|}{open emitter} & \multicolumn{2}{|l|}{open base} & \multicolumn{2}{|l|}{open collector} \\
\hline \multirow{3}{*}{\(n \cdot p \cdot n\)} & emitter & \(\uparrow\) & emitter & 0 & emitter & \(\downarrow\) \\
\hline & base & 4 & base & 0 & base & \(\downarrow\) \\
\hline & collector & \(\uparrow\) & collector & 4 & collector & \(\downarrow\) \\
\hline \multirow{3}{*}{\(p \cdot n \cdot p\)} & emitter & V & emitter & \(\uparrow\) & emitter & \(\uparrow\) \\
\hline & base & \(\downarrow\) & base & 4 & base & 4 \\
\hline & collector & 0 & collector & 0 & collector & 4 \\
\hline
\end{tabular} "Higher-than-normal" means voltage has risen toward potential of ungrounded battery terminal; "Lower-than-normal", voltage has fallon toward 0 (potential of grounded battery terminal with respect to ground).


Fig. 6-Open collector circuit with (a) \(n-p-n\) transistor; (b) p-n-p.
an open emitter circuit is shown. Here, the collector voltage is zero because there is no current flow in the collector circuit, and no voltage drop across R4.

The base voltage in this case has dropped slightly. As with the n-p-n transistor, a slight base-to-emitter zurrent flows through R1. When the emitterbase circuit is open, this current flow stops and the voltage at point A drops slightly (goes less positive). This causes the base voltage to drop. The open emitter then assumes the base voltage.

\section*{Open collector circuit}

Fig. 6 shows the effect an open collector circuit will have on the normal operating voltages of a transistor. In both the n-p-n and the p-n-p circuits, the emitter and collector voltages have become equal. The base voltage has changed very little.

Since the collector circuit is open. no current flows through it and the collector voltage rises or drops to the same voltage as the emitter.

Because of the large change in the collector voltage, and only a small change in emitter and base voltages. the defect is clearly in the collector circuit.

END
D
that kind of repair altogether.

The writer, with a deliciously nervy sense of humor, has decided to fight back. A customer came in with a set, requesting the technician to "just look at it." The technician did-just that. Just looked at it.
"Or take the customer with the little \(\$ 9.95\) squawker box. He wants an estimate because he doesn't want to spend very much. Try smiling and saying. 'Well. now, these seldom run over \(\$ 40\) for a good repair.' You will certainly get his attention."


OUR EDITORIAL REVIEWER FINDS THIS SET A TERRIFIC IMPROVEMENT OVER OLDER ONES. FUN TO BUILD AND EASY TO ADJUST, TOO.


\section*{Field-Day For Kit Builders:}

\section*{DO-IT-YOURSELF COLOR TV}

Having been the owner of one of the first 21 -inch color TV sets since 1956, I was curious when Heath announced their color TV kit. I decided that putting one together would make an interesting story, particularly since 1 had a basis of comparison in the 1956 receiver.

Assembly was no more difficult than any other kit-just more of it. The instruction book is a story in itself-all 16 ounces of it. Not content with giving step-by-step assembly, adjustment, operating and service instructions. Heath included 16 pages on the fundamentals of TV theory-both black-and-white and

Fig. I-Unustual audio circuit in Heath GR-53 hus two independent outputs. One is medium-impedance cathode follower for teeding hi-fi system; other output supplies up to 2 watts to 8 -ohm speaker at low distortion. Note loudness compensation on volume control. Control does not affect hi-fi output —it works only on speaker portion. Treble-cat tone control circuit is omitted from this figure.

color. And there are eight pages of fullcolor photos of the picture-tube screen showing correct and incorrect color purity, convergence and color adjustments, as well as various defects, to aid in troubleshooting.

A considerable part of the kit is supplied preassembled. The front end and the video i.f. strip are factorywired and aligned, with tubes already installed. The horizontal output stage and associated high-voltage rectifiers are prewired and assembled in a cage; the dynamic convergence control board is also furnished preassembled.

The builder must assemble two printed board assemblies: the soundsync board and the color circuit board (the most complex). Then he must mount all circuit boards, miscellaneous transformers, chokes, controls and other parts on the chassis and interconnect them. A preformed and precut cable assembly is furnished which takes care of a large part of the interconnecting of circuit boards. I had a moment's difficulty figuring out which end of the cable assembly went where. But careful study of one of the many pictorials solved the problem.

The step-by-step instructions were most complete and precise. Finally, aft er 34 hours (the instruction book says it can be done in 25 hours, but I took my time) I had all wiring completed. the chassis and picture tube degaussed. (A degaussing coil is furnished-it gets its power from the 6.3 -volt heater winding on the power transformer.) 1 made the few precalutionary checks suggested in the manual and turned the set on expectantly.

No sound, no raster! Then I noticed that the horizontal output tube's plate was cherry-red. No drive on the grid! A voltage check showed no B-plus on the horizontal oscillator tube. Tracing back from the rectifier to the horizontal oscillator, I found the trouble: the B-plus lead to the sound syne board
was loose. A cold-soldered joint (sob)! After re-soldering. I turned on the set again. This time picture and sound came forth. I was ready for the adjustments for color purity and convergence.

The purity adjustments proved to be quite simple. The next step was static convergence (at the center of the raster). This, too was not a very difficult operation. Heath thoughtfully built into the set its own dot generator! A slide switch on the color circuit board puts it into operation. In addition, two clip leads soldered to the chassis make it a cinch to blank out one of the color beams to check convergence of any two guns.

After completing the static convergence I paused to admire my handiwork. I was startled to note that al-

\section*{Fig. 2-Circuit of} huilt-in dot generator for convergence adjustments is described in detail m article. It can be witched in at any time once set is in operation.


Completed Heath color TV chassis ready for connection to 21FJP22 picture tube ana installation in cabinct or custom mounting.


The pentode half of the 6GW8 is used as a conventional sound output stage. About 10 db of negative feedback from plate to grid reduces distortion and flattens frequency response. The stage supplies 2 watts into 8 ohms at less than \(3 \%\) harmonic distortion. Response is \(\pm 2\) dh from 50 to 15,000 cycles. Using the oval speaker supplied with the console cabinet sound is vastly better than in most console TV's. With an external hi-fi system sound is limited only by the quality of the broadcast or the hi-fi system.

An extra stage of color amplification is provided. This stage has an age voltage applied to it (derived from the color burst) for automatic color control.

\section*{Color dot generator}

The built-in dot generator circuit is shown in Fig. 2. R1 and R2 together, C and the NE-? form a relaxation oscillator. R2, the vertical nots control, varies the voltage applied to \(C\) as a way of controlling frequency. Oscillations are synced to a multiple of the vertical sweep frequency and applied to diode D. Coil L. the horizontal dots coil, is tuned to a multiple of the 15.750 )-cycle horizontal retrace frequency. It generates a chain of pulses when the retrace pulse shock-excites it. The pulses are mixed with the relaxation oscillator pulses and applied to D, which is biased so that only pulse tips are passed to the grid of the video amplifier. The vertiCal. Dots control varies the number of horizomal row's of dots displayed on the picture tube. Changing the inductance of the horizontal. dots coil L- varies the number of vertical columins of dots. The dot generator output is fed to the grid of the video amplifier through a dpdt slide switch.

After using the set for several weeks. I can report that color and black-and-white reception is excellent, and tuning for color is noncritical. Convergence and color balance do not drift-in marked contrast to the 8 -year old color set. Color TV has come a long way in those 8 years. The only remaining problem is the variable quality of the transmission from some stations. But then, weve had that trouble with black-and-white TV (and with radio, too) all these years!


> PICK-OFF BOX \& WATTMETER FOR CB

\author{
Make transceiver power \\ and frequency checks \\ without creating interference
}

\section*{BY LYMAN E, GREENLEE}

Servicing CB transceivers is now important business. But to make the frequency and power checks the FCC requires, you need specialized equipment. As channels become more and more crowded, you must limit on-the-air checks to an absolute minimum. Throwing a carrier on the air for frequency or power measurements is extremely annoying to all stations in the vicinity. The Pick-Off Box was designed to let you pick off a signal for frequency measurement or receiver checking without putting a carrier on the air. The cost of the Pick-Off Box and Watmeter is so little in time and materials that no one who services any CB equipment can afford to be without it.

It was designed primatily to feed a signal to a frequency meter such as the Lampkin MFM ( Mierometer Frequency Meter). About 3.5 watts rf input is required for a full-scale meter reading, and the Pick-Off provides just the right amount of output to beat with the MFM for an accurate frequency check.

If an accurate of watmeter is handy. you can set the (0-1 milliammeter for 3.5 watts if full scale by adjusting the \(5 .(\%) 0\)-ohm pot. R3. Otherwise, simply set \(R 3\) at half scale ( 2.500 ohms). The meter indication is useful for checking transmitter tuning and crystal activity as you make frequency measurements for the various channels, regardless of whether it is accurately calibrated in rf watts.

Radiation is so low that interference with other CB equipment on the same channel is negligible.

The block diagram (Fig. 1) shows the setup for making frequency measurements. The transceiver under test is coupled to the hox through a short length of coaxial cable terminated with a standard Amphenol connector. For the pickoff for the MFM, a length of shielded microphone cable is terminated in a phone ijp at one end and an Amphenol connector at the other.

Besides the MFM and Pick-Otl Box, you will need an all-wave receiver that will tune to WWV. The antenna may be coupled direct to the MFM. using a small capacitor ( \(\mathrm{C}_{\checkmark}\) ) of around 10 pf . \(C_{x}\) should be chosen to give a clear zero beat with the micrometer frequency meter without overloading the receiver's ave system.

After the equipment has warmed up thoroughly, set the MFM trimmer to zero-beat with WWV, and return the all-wave receiver to standby. Key the CB transceiver, note the power oupput


Fig. 1-Setup for measuring frequency with Lampkin MFM and Pick-Off Bor.
and tune each channel to zero-beat with the MFM, noting the dial reading for each crystal. Calculate deviation from the chart supplied with the MFM for each channel. A weak crystal will show up immediately because the rf output read on the meter will be noticeably lower than on other channels.

Using a transmitter for receiver alignment is easy with the Pick-Off Box. Couple the transceiver being aligned through the box to another transceiver. The Pick-Off will provide an attenuated signal to the receiver, which can then be aligned to exactly the frequency of the transmitter. This type of alignment is important with fixed-tuned units. Each channel can be adjusted precisely to the frequency of the transmitter it is to receive, rather than to that of a test oscillator or frequency meter, which might be off-frequency compared to the transmitter. This alignment will insure maximum signal transfer between two units.

After one receiver is aligned for all channels for which crystals are available, reverse the procedure and align the other receiver by using the transmitter (of the transceiver already aligned) as a signal source. One of the biggest headaches with fixed-tuned transceivers is that they must be precisely tuned, and good reception is impossible if either the

Fig. 2-Circuit of the Pick-Off Box.

transmitter or receiver is off frequency.
Obviously, it's better to tune the receiver exactly to the transmitter frequency than to set it precisely on the correct channel frequency, since the transmitter crystal may be either plus or minus as much as \(.005 \%\) and still be within FCC tolerances. If we had a transmitter operating at plus. \(005 \%\) and we happened to tune the receiver to minus \(.005 \%\), the total error would be \(.01 \%\) between the two units, and reception would be very poor if the receiver had a crystal filter. It always pays to


Fig. 3—Meter callibrating circuit

Wiring the Pick-Off Box is a quick job.

check frequencies carefully if there is a complaint of poor, garbled, mushy reception between two fixed-tuned units. Most fixed-tuned receivers can be adjusted on each channel. If there is no such adjustment, change crystals in the receiver to match the transmitter frequency. Receiver crystals are often made to much broader tolerances than transmitting crystals, and it is usually possible to get the right one by careful selection.

\section*{Construction notes}

Fig. 2 shows the wiring diagram of the Wattmeter and Pick-Off. R1 is used to make the Shurite meter read 1 ma full scale (the one I used read high). A more expensive \(0-1\) ma meter could be used. but this one is cheap. rugged and accurate enough. Check the meter by connecting it in series with an accurate \(0-1\) ma meter. a flashlight cell and 2,000 -ohm rheostat. Choose a value for RI that makes both meters read the same. R2 and R3 serve as limiting and calibrating resistors so that the meter will read about 3.5 watts rf with R 3 set at half scale or 2,500 ohms. R3 may be set at its halfway position or adjusted to give a full-scale meter reading with 3.5 watts rf input if an accurate rf wattmeter is available for comparison.

The rf signal from the CB transceiver is fed through a length of RG\(58 \mathrm{~A} / \mathrm{U}\) cable to the load resistor, made up of R4. R5 and R6 in series. Total resistance of this combination will be 56 to 57 ohms. A small portion of the signal is picked off through C1 from the top end of R 6 while diode D rectifies part of the remainder and feeds it through the filter, L. C2. C3 and C4.

Construction should pose no problems. Everything fits neatly into the aluminum box. with room to spare. Layout is not critical, but keep all leads short. return rf grounds to a common point, and follow as closely as possible the parts arrangement shown in the photo of the interior of the instrument. There will be some radiation from the box. but not enough to cause objectionable interference. Ordinary microphone cable is adequate for the pickoff lead to the frequency meter. Strip the shield back about \(3 / 4\) inch from the phone tip used to connect to the MFM antenna jack. Cable length is not critical. END


\section*{DESIGN YOUR OWN SPEAKER ENCLOSURE}

You have a halfway decent speaker and want to build an enclosure for the basement playroom. So far as audio test equipment goes, you have an ordinary vom and that's about it. What do you do?

Naturally, if the speaker is made by a well known manufacturer, you will write direct to the company for its recommendations. If it is an obscure imported model, or if you don't know who made it. you can still go ahead.

\section*{Find out what you can}

What is the speaker diameter? Speaker diameter refers to overall frame size, not actual radiating area of the cone. If it is an oval speaker, assume it equivalent to the standard size which falls somewhere between the maximum and minimum diameters.

Fig. I-Port area is enclosure volime for the three kinds of speakers described in the text.


\author{
By GEORGE L. AUGSPURGER
}

\section*{FOLLOW THESE RULES AND YOU'RE} SURE TO GET THE BEST

\author{
FROM ANY HI.FI SPEAKER.
}

Second, determine the impedance. If it is not marked, measure the de resistance with an ohmmeter and then double it for a rule-of-thumb impedance rating. There is very little chance that the figure will happen to be exactly 4,8 or 16 ohms, but choose the one that comes closest as the nominal impedance of the speaker.

To make a reasonable estimate of what size enclosure will work best with a given speaker, we must place it in one of three groups:
(a) Light cone/stiff suspension. If the cone seems to be pretty thin and doesn't move easily when you touch it, the speaker probably belongs in this group. The great majority of PA speakers and atuto speakers do.
(b) Light cone/floppy suspension. A good number of the bargain highfidelity speakers, especially the imported units, have cones that move very easily. The outer edge of the cone may be treated with some kind of sticky substance to make it more flexible. If you


FlG. 2-Tunnel (duct) length for small enclostures with 10 -square-inch port opening. Lengths on chart are measured from back of butfleboard. Thus, with a \(3 / 4-\) inch front pancl (haffe). actual duct length is \(3 / 4\) inch longer than figure given. This has heen alloned for in making chart. (Leength shown does not include baffte thickness.)
hold the speaker up to a light. you may see that the outer edge of the cone is much thinner than the rest.
(c) Heary cone. If the cone seems to be considerably thicker than a sheet of ordinary writing paper-more like a blotter. for example-and it is fairly soft, then the speaker is probably designed as a woofer.

In any casc, hook the speaker up and listen to it before you start work. Without an enclosure, bass will be pretty weak, hut you can get an idea of the mid-range and treble response. If highs are crisp and clean. there is no point in adding a tweeter unless you are willing to pay for a good unit. On the other hand, if the speaker sounds "mellow" and somewhat muflled, it won't be much good for anything but background music unless you add a tweeter. In this instance, a less expensive cone tweeter may be satisfactory.

\section*{Enclosure volume and dimensions}

The internal volume of the finished box is important. The table next to Fig. 5 at the bottom of page 46 gives the minimum volume needed if you expect to extend bass response to the limits of the speaker itself. If you want to make a smaller cabinet and are willing to sacrifice some hass efficiency, it also tells you the minimum volume that can be expected to give pleasing sound.

Although some engineers have certain proportions they like to use in designing enclosures. there is no one magic formula for superior results. The main idea is to keep the cabinet interior from setting up strong resonances at certain frequencies. To be safe. no dimension should be more than three times anv other dimension.

At this point you run into the struggle between acoustics and decor. An enclosure with only 2 cubic feet of internal volume is still a sizabic object, and you may find that it must be squashed into an awkward shape to get
 more important than proportions, go ahead anyway. A little farther on, we will take up these "problem cases" and show what can be done to make them perform almost as well as the more usual configurations.

You will have to juggle dimensions until you arrive at a set of figures to fit into the available space, yet allow adequate internal volume to work with the speaker you plan to install. Then lay out the baffleboard. A cutout must be provided for the speaker, for the tweeter (if you use one) and for the port.

\section*{Port size}
"Aha!" you say. "But suppose I don't want to build a ported enclosure?"

Well, if you want to follow my suggestions, you have no choice. I've probably played with as many wild enclosure designs as any other audio nut, and I am convinced that for safe, predictable results from a variety of speakers, the ported enclosure is the best bet.
"All right," you reply, "but then I will need to know the cone resonance

This Lafayette "Mini-Duct" enclosure, used with a Lafayette SK-98 8-inch speaker, puts out some fine somad. Simple duct structure on floor of cabinet can be modificd to suit various speaker resonant frequencios. Radiotron Designers Handbook (Fourth Edition, 1952) gives much valuahle dafa, formulas, charts, stc., to assist you in designing or modifying an enclosure.
of the speaker, and the radiating area of the cone, and the formula for critical damping, and how to tune the port, and all that."

No, you will not. The term "reflex" has purposely been avoided since it implies a certain type of ported enclosure. But a lot of the bugaboos about "boom boxes" and tuning the system with clicks and bongs are pure mythology. So long as you observe the precautions sprinkled through this discussion, the completed project will work almost as well as if
you had all sorts of professional test gear. Not quite as well, perhaps, but your chances are at least as good as if you spend a lot of time playing test recordings and blowing smoke into the port.

Refer to the three curves in Fig. 1. Find the recommended port size for the speaker you wish to use and the cabinet volume selected from the table. The shape and position of the port are not particularly important but, again, its dimensions should not exceed the 3-to-1 ratio. If the idea appeals to you, you may even make a "distributed port" by drilling a number of holes in the front panel so that their combined area adds up to the suggested value. The individwal holes should be at least \(3 / 4\) inch in diameter if the arrangement is 10 operate the same as a single large port opening.

If you are building a small bookshelf enclosure, the port area may become so small that it will not radiate sound effectively. The minimum area of a port is about 10 square inches. Rather than make the opening any smaller, we must add a tube or tunnel to the port to tune the enclosure properly. Fig. 2 suggests the best tunnel length. It is possible to use tunnels with larger ports, but this involves additional complications. For a nice, simple predictable design, the large ducted port offers no real advantage, so we will just ignore it.

\section*{Baffleboard layout}

Except for the problem cases to be mentioned later, the speaker will perform the same no matter where it is located on the front panel. It is a good idea to have the source of sound somewhere near ear level. so the speaker should be near the top of the panel it the cabinet is going to be set on the floor. If you plan to use a tweeter, this gets priority, and the main speaker is then

 is generally near the bottom, but if it has to go somewhere else, don't worry about it.

Fig. 3 shows a popular configuration, established when the reflex enclosure came into general use. Symmetrical and easy to lay out, it works well. Note the stiffener across the baffleboard between speaker cutout and port. This braces the panel and at the same time gives a little acoustic isolation between the edge of the speaker cone and the port. If you can incorporate such a


Fig. 5-Layer of absorptive material across back of speaker sometimes controls "hoom".
stiffener into your design, it is a good idea. Whether it is there or not, the port and the speaker should be no closer than 2 inches, and no more than 6 inches apart, approximately.

A brief warning about the tweeter: You cannot take an ordinary 4 -inch speaker and mount it in the same chamber with the main speaker. The two cones will be pneumatically short-circuited. Many small units designed specifically as tweeters are completely sealed, and in this case there is no problem. But if the one you choose is not, it must be installed in a separate little chamber within the main enclosure, as in Fig. 4. It should be completely lined with absorptive material, and the volume occupied by this little isolation chamber must be subtracted from the
minimum enclosure volume (in cubic inches)
\begin{tabular}{crccr}
\hline Speaker group & \multicolumn{4}{c}{\begin{tabular}{c} 
Speaker diameter (inches)
\end{tabular}} \\
& \(\mathbf{8}\) & \(\mathbf{1 0}\) & \(\mathbf{1 2}\) & 15 \\
A & & & & \\
Light and Stiff & 4,300 & 6,000 & 8,200 & 10,100 \\
& 2,100 & 2,900 & 4,000 & 5,200 \\
B & & & & \\
Light and Floppy & 4,100 & 5,700 & 7,600 & 9,500 \\
& 2,100 & 2,700 & 3,600 & 4,800 \\
C & & & & \\
Heavy & 4,000 & 5,200 & 6,900 & 8,600 \\
& 2,100 & 2,600 & 3,300 & 4,300
\end{tabular}

Upper figure in each entry is minimum internal volume for optimum bass; lower figure is minimum for acceptable overall performance.
total cabinet volume when working out the port size.

\section*{Bracing}

A good loudspeaker enclosure must be as rigid as possible. Enclosures with thin unbraced panels may sound quite distinctive, perhaps even pleasing. But, unless you are a gifted craftsman, willing to spend as much time on a speaker cabinet as you would in building a violin, it is much better to make sure that the enclosure does not add distinctive coloration to reproduced sound.

You can sometimes get by with little internal bracing if you use thick panels. But to be on the safe side, a brace should be added to any surface larger than 18 inches square. The easiest way to brace a panel is to glue and screw a piece of \(1 \times 3\) on edge across the narrow dimension of the panel. The enclosure in Fig. 3. for example, has braces across the front and back panels. Since the cabinet is assumed to be less than 18 inches deep, no bracing is required on the remaining four surfaces.

As a final test, check the panels for rigidity when the enclosure is finished. Pound on them with the heel of your hand. If there is a strong "kettledrum" sound, better add another interior brace or two. The more solid the enclosure, the firmer and crisper the bass response will be.

\section*{Padding}

The only thing padding does is to absorb mid-range sound that would otherwise bounce around inside the enclosure and finally be reflected out through the port opening or the speaker cone itself.

The padding material should be at least \(3 / 4\) inch thick. reasonably soft and fluffy. Several products available from most hi-fi dealers are specially formulated and packaged for this purpose. Scraps of ordinary felt rug padding are often used and work very well.

Padding does not have to be neat, it does not have to be fastened tightly to the interior surfaces, it does not have to cover any specific areas. Generally, the less padding used, the more "live" the sound. An accepted rule is to pad about half the interior surface area and arrange to have an unpadded wall always face a padded wall. For example, a good starting point is to pad the back, bottom and one side of the enclosure. Padding can be loosely tacked to the enclosure walls with upholstery nails, staples or large carpet tacks. Insulated wiring staples are easy to use and do a good job.

Whatever you do, don't put a layer of padding across the port opening. Some sophisticated variations of the ported cabinet do use that kind of resistive loading across part of the opening, but they are designed for use with specific speak-
ers. From time to time, articles suggest that two or three layers of old cheesecloth across the port will damp out the "reflex boom". The only trouble with this idea is that it doesn't work, as can be demonstrated quite readily by blocking the port altogether. If the system boomed in the first place, chances are that the boom is still there when it is changed to a completely closed cabinet.

When such boominess does occur. it may be because of room acoustics, a cabinet too small or not sumiciently rigid. or a speaker which has a poor coupling coefficient. In some cases, the boom can be controlled by tacking a layer of padding across the back of the loudspeaker (Fig. 5).

\section*{Installing speakers}

Remember that you will have to make one panel of the enclosure demountable for installing speaker components. Usually the back panel is removable. but if the enclosure is to be permanently hung or built-in, then the front panel is a more practical choice. The demountable panel should be held in place by screws spaced every 4 or 5 inches around the perimeter and screwed into wood strips glued in place on the top. bottom and sides of the interior.

Although small speakers can be held in place with wood screws. machine
screws make a neater job and simplify removing and reinstalling the speaker if this should ever be necessary. Machine screws can be used with matching nuts and washers, or screwed into T-nuts inserted from the opposite side of the panel. T-nuts can be purchased from most large hardware stores.

Connecting wires can be brought out through small holes in the back, or you can use serew terminals or a phone jack. A little extra time and thought here can save a lot of inconvenience when you hook up the system. Do not use ordinary ac connectors. If you do. sooner or later someone will plag the speaker inte a wall outlet.

\section*{Grille cloth}

I have purposely avoided any suggestions of styling or furniture finishing because that would require a treatise in itself. If you want to do a complete construction and finishing job. see Jeff Markell's book Designing and Building Hi-Fi Ituriture, Gernsback Library. A simple and attractive grille can be made by constructing a frame which comes flush with the edges of the cabinet, and stretching grille fabric over it. The frame can be held in place by decorative screws, dowel pins or friction catches.

As to the grille fabric, there are a number of colors and patterns available
in synthetic materials made for this specific purpose. Most hi-fi dealers carry them. If you want something really distinctive, look for fabrics in the yardgoods department or the drapery counter of a department store. Choose a fairly hard (as opposed to fluffy). open-weave material (easy to blow through). Heavy upholstery fabrics or thick soft materials will absorb most of the high frequencies and make the system sound muffled.

The wooden panel behind the grille cloth should be painted a dull flat black so that it will not be visible. Fabric should be spaced \(1 / 8\) inch or so away from the panel to help keep the cutouts from showing through. If the material is so open that it is casy to see through. back it with a second layer of black sheer ravon or silk to make the grille opaque.

\section*{Performance}

Remember that room acoustics will affect the performance of the system almost as much as the speakers themselves. Don't place the speakers so that there are large pieces of furniture in the path of the sound. If you have two systems hooked up to a stereo source, place the cabinets so that a listener sees an angle of about \(40^{\circ}\) between the two sound sources. Don't be afraid to experiment with speaker placement for optimum results.

END


Conducted by
E. D. CLARK

Two puzzlers for the students, theoretician and practical man. Simple? Double-check your answers before you say you've solved them. If you have an interesting or unusual puzzle with an answer) send it to us. We will pay \(\$ 10\) for each one accepted. We're especially interested in service stinkers or engineering stumpers on acwe can't answer individual ger but wh ll prin we cant anserting idual ons, but we lin he more interesting solutions-ones the original Write EQ Editor Radid

Write EQ Editor, Radio-Electronics, 154 West 4th Street, New York, N. Y. 10011
Answers to this month's puzzles are on
page 60.

\section*{Autotransformer}

Can you determine the reading on ammeter AI and ammeter A3?-Kendall Collins


\section*{Case of the Lost Energy}

Here's a capacitor problem to test your ability in analyzing "simple" circuits:

Two one-mike capacitors. and a switch connecting them. The left capacitor has been charged up to \(1(0)\) volts; the right one is unchanged. The switch is then closed.


Since we have not changed the total amount of charge, and since the theory book tells us that:

Charge \(=\) Farads \(\times\) Volts \((\mathrm{Q}=\mathrm{CE})\) the left capacitor will lose half of its
charge to the right one. The voltage will now be 50 . since the capacitance has doubled. The circuit now consists of a \(2-\mu \mathrm{f}\) capacitor charged to a potential of 50 volts.


So far. so good. Now once again, we refer to our theory book and find the formula for the energy stored in a capacitor:
\[
\text { Energy }=1 / 2 \times \text { Farads } \times \text { Volts }
\]

Let's try some numbers:
Originally.
\[
\begin{aligned}
\text { Energy }= & 1 / 2 \times 1 \mu \mathrm{f} \times 100^{2}+1 / 2 \\
& \times 1 \mu \mathrm{f} \times 0^{2} \\
& =2,500 \mu \text { Joules } \\
& =.005 \text { Joule }
\end{aligned}
\]

Finally.
\[
\begin{aligned}
\text { Energy }=1 / 2 \times 2 \mu \mathrm{f} & \times 50^{2} \\
& =2.500 \mu \mathrm{Joule}
\end{aligned}
\]

We lost half the energy when we threw the switch! But a capacitor can only store energy, not dissipate it. Also. our theory book is a firm believer in conservation of energy.

Now then. simply, the problem: W'here did the energy go.?
(Assume that the switch is perfect.) -Donald E. Lancaster

\section*{MORE ON MULTIPLEX VIDEO}
the editorial "muitiplex vimeo" in the March issue aroused considerable interest. One of the comments on it was simply a copy of Patent No. 3,079.462, issued to W . Rosenthal for a "Tclevision Receiver with Picture Selector Device."

The patent, which was filed July 21, 1958, and issueci February 26. 1963, showed a rather conventional-looking television set (see figure) with a box containing eight additional panels mounted on top of it. and what is obvi-
ously a control device on the end di a cable. The two parallel rows in the hox above the set are small pilot cathoderay picture tubes, with medium-persistence screens.

Pressing a button on the control starts a rotating switch which selects each channel's signal for a period of say. \(1 / 8\) second. These signals are applied to the grids of video tubes in tura through a distributor. With a \(1 / 8\)-second period for each tube, the tube would be scanned four times, and would receive

an impression that would persist while the remaining screens were being scanned. Thus. four channels could be scanned in \(1 / 2\) second. If eight were scanned, the total period might be 1 sec ond.

Circuitry is provided to transfer the picture on any one pilot screen to the main screen. This is one way of realizing the multiple video receiver described by Hugo Gernsback in the March editorial.

Two of the references cited by the Patent Office are "The Radio-Controlled Television Plane," Television News, March-April 1931, and "Multiple Television, a Forecast." Radio News, pp. 528-529, December 1928. Both of these references are to carly articles by Gernsback.


The set described in Pat. 3,079,462.
The radio-controlled television plane (shown in the illustration opposite) was actually reprinted by Television News from Gernsback's publication, the Experimenter of November 1924, and was indeed a concept of multiple television equipment (probably the first such concept).

The plane would be unmanned and controlled completely with television cameras (called "electric eyes" in the article) pointing north, south, east,

Set shown on the cover of Gernshack's Radio News, December 1928. The top screen is probably the first representation ever of a TV program in color.
west. up and down. The signals from the unmanned plane would be transmitted to a ground station, where the control operator looking at the six screens would be able to ohserve the action around the plane and control it accordingly.

Thus, if the plane were equipped with guns, the control operator could mancuver it, as a fighter, to down an enemy plane, or, if supplied with bombs. to knock out a ground installation. With the six screens before his eyes at the same instant. the control operator would be able to see more than an aviator actually sitting in the cockpit.

The second reference cited in the patent refers to an article printed in December 1928. after a few experimental television receivers had come into use. The reason for a multiple receiver was the same one given in the March 1964 "Multiple Video" editorial-the desirahility of being able to see "what's doing" on several channels at a time.

The position of the screens on the multiple television receivers in the 1928 article is considerably different from that suggested in the 1964 editorial. The reason is that television in 1928 depended on a large rotating disc, perforated with a spiral of holes. Gernshack suggested that, instead of one spiral. the disc could have three sets: the large screen at the top would be scanned through one set of holes. and the two smaller ones at the base by two other sets, all at the same time. (This would be simultaneous, rather than sequential. television. as described in the more recent patent.)

Interestingly enough. the top screen in the set of the cover of Radio News, December 1928 (which was printed in four colors is shown displaying its picture in full color. The smaller screens (labeled 2 and 3 on the cover) are in black-and-white.

Thus the wild dreams of the past come a little nearer to reality each time they are projected. The television plane of 1924 was described at a time when nothing existed that could really he described as television. The experiments of Francis Jenkins had succeeded in transmitting silhouettes. but there was no gradation of tone between black and white, and seldom were attempts at motion shown.

In 1928. TV sets of a type were in existence-the means for making a true television picture were known. In 1964. as Patent No. 3.079.462 and the "Multiple Video" editorial show. all the means for producing a true multiple television device are at hand. If a designer had a strong enough desire for such a TV receiver, he could have one in the time it would take to put it together.

END


The origind multiple-screen television concept.

\section*{TUNNEL DIODE REGULATOR}
here is an unusual application for a tunnel diode. It regulates a de supply and prevents the output from rising above a preset level, as disclosed in patent No. 3.108.218, assigned to International Business Machines Corp. Normally biased for positive resistance, the diode is stable. If the applied voltage rises for any reason, the hias is advanced to the region of negative resistance, and the diode oscillates.

During each positive alternation across the inductor. Q1 conducts. Its current flows through R1. C1, which smooth the pulses and deliver a forward hias to Q2 which also conducts.

A much larger current passes through Q2 than through Q1. In flow-
ing through R2, it drops the voltage to normal and compensates for the undesirable increase.


C2 filters the regulated output. Suggested component values are for a \(5-\mathrm{ma}\) diode having a 5:1 peak-to-valley current ratio.-l. Queen


Their circuits have much in common; there's little to go wrong!

\section*{By WAYNE LEMONS}

ELECTRONIC PHOTOFLASH UNITS HAVE been used by professional photographers for years, but when these units need service, nobody seems to want the job -sometimes not even the factory. Yet almost any electronic technician is equipped to whip photoflash equipment back into shape and make himself a piece of change in the bargain.

Nearly all speed lights (or strobe lights, as they are sometimes called) work on identical principles. A gasfilled flash tube has high voltage across it, but that alone does not fire the tube


Fig. I-How a speedlight is fired. High voltage remains across tuhe at all times, but tube does not fire until triggered by pulse.
until the tube is triggered with a voltage pulse. Fig. I shows the basic idea. The trigger pulse is fed to a small wire or clamp fastened around the outside of
the flash tube. The trigger pulse momentarily ionizes the gas inside, just as rf ionizes the gas inside a small neon bulb held close to a strong rf source.

When the gas is triggered, the current from the high-voltage capacitor is discharged through the flash tube and a short, brilliant flash is produced. The light energy output is calculated by photographers in watt-seconds. The number of watt-seconds is determined by the capacitance of the high-voltage capacitor and by the amount of voltage used to charge it. The formula is \(1 / 2 \mathrm{CV}^{2}\), where \(C\) is capacitance in microfarads and \(V\) is voltage in kilovolts. For example, if the high-voltage capacitor is \(20 \mu \mathrm{f}\) and the voltage across it is 2 kv (2,000) volts) we would have \(1 / 2(20 \times\) \(\left.2^{2}\right)\) or \(1 / 2(20 \times 4)=40\) watt-seconds.

The size of the high-voltage capacitor determines the speed of the flash; smaller capacitors give shorter flashes. A \(15-\mu \mathrm{f}\) capacitor at 2,000 volts has a flash duration of only \(1 / 10.000\) second. The speed change is not linear with capacitance; it takes almost 4 times as much capacitance to increase the time to \(1 / 5,000\) second.

\section*{The trigger circuitry}

Nearly all studio speedlights are triggered by a scheme like that of Fig. 2. A pulse on the primary of the trigger transformer is stepped up in the secondary to a high enough voltage for triggering. A camera could be connected across the trigger button switch but the current in the primary circuit could easily damage the camera contacts. Some other arrangement is necessary. This is usually done with a thyratron trigger tube, occasionally with a relay, and in a few late models with a power transistor. Fig. 3 shows how a thyratron is connected as a trigger tube.

Studio speedlight is momted like photoflood. Power pack is behind reflector, not separate as in most units. Its circuit is in Fig. 4.

The \(0.5-\mu \mathrm{f}\) capacitor ( C 2 ) in the trigger transformer primary is charged through the 100,000 -ohm resistor. The charge is slow so that there is little output from the secondary. The thyratron is kept cut off by returning the grid resistor to -50 volts.


Fig. 2—Most common triggering method uses transformer to step up pulse. Closing switch sends "hick" through transformer and sets off tube.

When the points in the camera shutter close. the voltage on the grid goes to zero because of the charging current in Cl. This drives the tube into conduction, ionizing the gas inside it, so that it has a very low resistance. C2 discharges through the trigger transformer primary and the thyratron and triggers the gas in the flash tube.

RI discharges Cl so that it will be ready to drive the grid negative on the next shot. Even if the camera contacts remain together, the flash tube will not flash again until the contacts are opened and CI is allowed to discharge.

\section*{Complete circuits}

Fig. 4 is a complete circuit of a popular speed light of a few years ago. It uses a "cold-cathode" OA4-G thyra-tron-no heater. This tube needs a large positive voltage on the starter anode before it will fire. When the camera shutter contacts close, the voltage on the starter anode goes more positive and triggers the tube. Rl is used to adjust the tube for the most sensitive trigger point without the danger of self-firing.

The one big problem with these units is the 0A4-G tube. It is erratic
unless specially aged. Just any tube picked off the shelf will not work. The factory supplies these special tubes but you can often age your own if you have a tube tester that will check thyratrons. Put the tube in the tester and fire it a number of times until it stabilizes. It will usually work OK after this treatment. A . \(25-\mu \mathrm{f}\) capacitor across R 2 will often help stop erratic firing also.

Fig. 5 is a former relay-triggered circuit that was modified for electronic triggering because the owner wanted to fire the unit with a phototube. If a photographer uses more than one speedlight, he need fire only one from his camera. The light from it will fire his other lights if they have phototube connections.


Fig. 3-Thyratron trigger "amplifier" saves camera sync contacts from heary surge currents.

The original relay connections and the new circuitry are shown in Fig. 5. Starred parts (*) were added. Since the voltages on the bleeder were negative, the plate of the 502 -A thyratron is grounded. A 47.000 -ohm resistor ( R ) was added in series with the bleeder to make the voltage on the grid more negative than on the cathode so that the tube is kept cut off until triggered by the camera.

The circuit in Fig. 6 has some interesting features particularly important to the service technician. A safety switch shorts out the high-voltage capacitor when the lid is removed. This is importunt. A speedlight can kill yotu! It uses a brute-force power supply with a tremendous current potential. Never stick your hands in a speedlight circuit without making sure the capacitors are "dead." You can discharge them with a screwdriver or a piece of wire but, if the capacitor is fully charged, there will be a loud report that can make you a nervous wreck. I prefer to discharge the capacitors through a 10,000 -ohm, 10watt resistor for a few seconds and then short them out. This is less grating on the nervous system, and must be easier on the capacitors.

If the flashtube can be made to fire just as the unit is turned off, this will discharge the capacitors and lessen the danger of probing around inside. The "Photogenic" unit in Fig. 6 has an extra set of contacts on the off on switch that does just that. Notice that it does so by grounding the plate of the trigger tube. This means that even if the


Portable electronic fush. Power pack hangs on shoulder strap; flash twhe and reflector assembly fits on camera.
trigger tube goes bad in service, the capacitors will still be discharged.

Another interesting feature of this unit is the flash indicator bulb. At first thought. it might seem foolish - you should certainly be able to tell whether there is a flash from the flash tube or not. This would be true if you were using only one unit but a professional photographer may fire several at the same time and he can't be sure that they have all fired. One misfire might ruin the effect he wants.

The flash indicator bulb lights bright after the unit flashes and slouly dims down and goes out when the unit is ready to fire again. It does this because it is wired in the primary circuit of the
plate transformer. When the flash tube fires. the 80 -uf high-voltage capacitor is short-circuited and discharged. The 2X2 rectifier starts drawing high current to recharge it. This high current is drawn from the primary and through the bulb. As the capacitor charges up, the current reduces and the flash indicator bulb dims and goes out.

A high Low switch is also used on this unit to increase or decrease the watt-second rating. In the high position the voltage is increased and the capacitor has more charge in it.

Some earlier models of the unit had the heater winding for the 502-A on T1. When the high low switch was on low, the heater voltage on the tube was


reduced also. This causes trouble if the tube is a borderline case and will not trigger in the low position but works OK in H GH .

\section*{Troubleshooting}

Speedlights are usually well built. The greatest troubles are from tubes. They also develop open resistors, leaky capacitors, bad transformers, etc., but a vom or vtvm and knowledge of how the speedlight works should be all that is necessary to make fast repairs.

Doesn't trigger. This trouble is often found in the connecting cords from the camera to the unit. Remove the cord from the speedlight and short the terminals or touch them with your finger-this should fire the flash tube if the unit is OK. If this does not fire the flash, remove the unit from its casemake sure you discharge the high-voltage capucitors!!! - and try a new trigger tube. If this does not cure the trouble, check the voltages on the tube. If these are OK. check the triggering transformer by using a jumper (Fig. 6). This discharges the capacitor through the transformer. Of course, make sure you have high voltage. The high-voltage rectifier may be defective or sometimes the high-voltage capacitor may be shorted.

Erratic triggering. If the electronic flash doesn't always work when the photographer takes a picture, he'll be embarrassed. Again, this trouble is most likely to be found in the connecting cords; if it isn't, the next place to look is for a bad trigger tube.

Erratic triggering is sometimes caused by the flash tube itself. This can only be checked by substitution but many photographers have two or more identical units. In this event, you can try a tube that is operating normally in the defective unit and see if the trouble is cured.

Another possible trouble is a defect in the trigger transformer or an intermittently open trigger capacitor in the primary. In a few cases the trouble has been traced to too much ambient light falling on a phototube-fired unit. If this occurs with some circuits, it will drain off the bias so that the trigger tube will not always fire. Try placing a small hood of tape over the phototube to reduce its sensitivity.

Some circuits require additional light from the flash tube on the phototube before it will activate the slave flash unit. You can sometimes extend the phototube on a short cord so that it can be turned to catch more light from

the master flash unit.
Low line voltage will cause erratic firing in some units. Measure the voltage. If it is below 105, connect a stepup transformer to increase it by about 10 volts. The "Up Ten-Down Ten" transformers sold for use with TV sets are ideal in this application. Some photographers prefer a metered variable-output transformer. They can set it for the same voltage every time so the light output will be consistent.

Spasmodic or repeated flashing. This may be caused by shorted or partially shorted connecting cables from the camera to the unit. If this is not the trouble (remove all connecting cords to test), the fault is likely to be in the trigger tube or an open bias resistor in its grid circuit. Sometimes, especially in areas of high humidity, the trigger transformer may break down between the primary and secondary winding, or leakage may develop across a connecting cable from the power unit to the speed lamp. Dirt around the plug can collect enough moisture to cause repeated flashing.

In units with sensitivity controls, it is best to adjust these at the highest expected voltage. Otherwise, the unit may self-flash if the line voltage surges upward. Too high a line voltage can cause spontancous firing. A voltage adjusting transformer is the ideal remedy.

Other troubles. Repeated flashing or failure to flash may be caused by incorrect polarization of camera and speedlight cords. If either trouble occurs. reverse lead wires at the camera or at the unit-whichever is easier. Phototubes will not trigger the flash if they are reversed.

If there is an unduly long time between charging periods, check the rectifier tube. long charge times can also be caused by low line voltage or, in the case of battery-operated portable units. by weak or discharged batteries. Fig. 7 is a battery-operated portable unit used by many professional photographers. This one uses two 225 -volt batteries in series. Later models use a transistorized power supply with regular flashlight batteries as the power source. The 5823 is a small seven-pin miniature cold-cathode trigger tube.

All speed or strobe lights work on similar principles but every company has a different way of arriving at the same end result. If you encounter a strange unit and a schematic is not available, spend 30 minutes or so tracing out the circuit. You'll be surprised how this will help you service the unit. using the ideas set forth in this article. Keep the schematic. Once a photographer finds someone who will repair his speedlight, he'll keep coming back and hell recommend you to his photographer friends.

RADIO-ELECTRONICS


\title{
Fixing Auto Antennas
}

\section*{Knowing these tricks can bring you customers}

\section*{By DAVID HELD}

Author's car radio antenna checker, built into a small two-piece alamimum hox.

A TWO-TONED FORD STOPPED IN FRONT OF THE SHOP AND A well-dressed man opened the front door, "I have a car radio that quit about 10 miles outside of town. Could you look at it?"

This is the type of call we get several times a day; we're located at the edge of town on a busy highway. Auto and truck radio repair is good business, if you are prepared and equipped to do it. Of course it means climbing in and out of cars, standing on your head at times. letting dirt fall into your eyes and being smeared with oil and grease... so why go into it?

Several reasons. When you have a customer you've sold a TV set to, or one whose set youre servicing, you are giving him complete electronic service by fixing his car radio. That at times will help you keep him as a customer. Also. look at the customer's side of the pieture. The car radio you repaired for him will lead him to call you again when his TV goes out or his kitchen radio quits.

Radio and TV business can be built up by doing car radio repair. Of course vou may never again see the tourist who stops at your shop, but you have picked up a buck from outside your own community. Don'l nick him as he goes through! Why? Down the road some 60 miles a gas station at a highway intersection recommends truck drivers to stop at your place for truck radio service. How come? Another truck driver`s radio went out once and you fixed it. He told the filling station operator. Word of good service gets around.

Another reason why atho radio service is profitable is that it keeps enough work handy so your men will be busy at all times. Good service technicians are hard to find.

\section*{The auto antenna}

The car radio antenna has only a few working parts, but it is vital. Without it, the radio won't work at all. A topcowl antenna has four basic parts: the antenna rod, an insulator. tightening nuts and a lead-in cable. Each part must do its job, or bad reception results. These are the troubles you're likely to find:
1. Bad lead-in
2. Broken antenna mast
3. Loose connections
4. Dirty contacts
5. Shorts
6. Water leakage

When the lead-in goes bad, two things happen: There's a lot of rushing noise at maximum volume, and weak sound even on local stations. Check lead-in continuity with an

\section*{A Neat, Tight Splice in 5 Easy Steps}

1. Starting the splice. Cut plug end off old cable, strip \(11 / 4\) inches of insulation off extension cable. Push braid back.

2. Solder inner conductors together. While joint is still hot, force soft plastic inner insulation over it.

3. Wrap joint snugly with plastic tape. Warming tape and splice slightly helps make a tight wrap.

4. Push metal braid ends together over joint and solder. Do not heat splice any longer than necessary.

5. Wrap completed splice tightly with plastic tape. Begin and end wrap at least an inch beyond point where original cable insulation was cut.
ohmmeter. or with a homemade gadget constructed as in the diagram below and the head photo on the first page. If the lead-in cable is open. it is probably open at the mate plug that fits into the radio. Clip off the plug and lug on the insulated wire. If it is intact, make a continuity chece. If continuity is good. replace the plag with a new one. Often the insulated wire is broken at the end where the antenna rod plugs into it. Replace the whole antenna in that case. since it is hard to mateh lead-ins to the many kinds of auto antennas


Hole-drilling tools. Left, electric drill with small circle cumer in chuck. Device at right is larger circle ("flohar") (ather, also designed to be chucked in clectric drill. Be sure to make sharp, small dimple with cemter punch at point where you want hole to prevent drill from "walking" awte.


Parts of alto antema monnting assembly.


When you install an auto radio that has been pulled from another car, the existing lead-in is often not long enough. Lead-in extensions are made for this purpose, and you should always keep a variety in stock. They come in assorted lengths. If you happen to be caught without one. the photos show how to make a good extension splice.

\section*{Broken masts}

If youre not sure that the car antenna is bad. plug a new antenna into the radio's antenna socket and hold it outside the atumobile. Stations should come in all over the dial now if the old antenna was defective.

When the antenna mast itself is broken off. replace the whole antenna. These masts are often broken by mischievous kids. or sometimes by driving into the garage with the antenna extended. In many instances. the antenna can he replaced at no charge through the owner's insurance.

Antennas often loosen from the effects of wind and rough roads. A loose antenna assembly eatuse intermittent or noisy reception when the car is moving. Wiggle the antennat. with the car radio on. and this will show up at once.

When the antenna assemby becomes loose. motor noise will get into the radio reception. To determine what motor noise is being pieked up by the auto antenna, unplug the antenna from the car radio. Start the motor and turn up the volume. listening for motor noise. (A little distributor noise is normall.) Plug the antenna back into the radio. If motor noise is now very loud and plain, the antenna system is picking it up. A bad lead-in. an ungrounded coax shicld or a bad connection between shield bond and metal cowl can be at fault. Clean the spot where the antenna ground bites into the metal cowl of the automobile.

\section*{Mounting the antenna}

When you install a new car radio antenna, watch out for several things. Be sure there is clearance for the antema mounting assembly. and that the antenna rod will clear the car hood when it is raised. (I once saw a top-cowl antenna newly installed on a truck. When the hood was raised, the antenna mast was smapped off completely.)

There are several tools on the market designed to drill antenna mounting holes. Many commercial antennas built specially for a certain make or model car come with a template for mounting the car antenna. Be sure the antenna stands up straight and does not block the driver:s view.

To be sure that the antenna is snug and tight, wiggle the rod as you tighten it. Use a wrench to tighten the chrome nut: pliers will mar the surface. A dropeloth thrown over the car fender will protect the finish from tool and belt-buckle scars. Squirt plastic cement around the hole where the cable goes through the firewall. This keeps moisture. dirt and dust out of the car.

Select (or urge your customer to select) a good antenna, moderately priced. Cheap antennas will not stand up and are very difficult to mount.

Many new cars have rear-fender antennas installed and in some cases twin fender mounts. A few technicalities are involved in repairing or installing such antennas.

Their lead-ins are long and are actually part of the radio's tuned input circuit. A front-cowl antenna can be tuned casily to the radio circuit with the antenna trimmer-set the dial above \(1+00 \mathrm{ke}\) on a weak station and adjust the trimmer for loudest volume. But with a back-fender antenna, the lead-in is longer. resulting in increased capacitance that cannot be compensated by the antenna trimmer. Simply connect a 100 pf capacitor in series with the antenna and lead-in. Most antenna manufacturers include one in rear-fender antenna kits.

Rear-fender antennas also loosen in their mounts, and trouble often develops at the T or Y section. The inside shielded wire is easily broken at that junction. If you are in
a critical reception area, it is a good idea to use only one antenna hooked up to the radio. Use the other antenna only as a matched dummy, for looks. In some cases this may still not get enough signal to the car radio, so install a top cowl antenna on the front and leave the two rear fender-mounts for looks. It is always wise to readjust the trimmer on every auto radio as it (or a new antenna) is installed.

It is hard to match rear-fender twin antennas to the radio, because of their long cables. A "booster" helps, but to do a good job, I would rather install a universal top-cowl antenna.

\section*{Power antennas}

Some of the more expensive autos have motor-driven antennas. These are operated by a de motor or by vacuum from the engine. When you remove an antenna of the vacuum-operated kind. mark the hose connections so that they will go back onto the correct nozzles. Sometimes mud hangs on the de motor connections and pulls them off, making the antenna inoperative. The telescoping sections become worn and hegin to "flap," making reception intermittent.

One of the biggest trouble spots in a power or "disappearing" fender antenna is the point where the lead-in enters the antenna assembly. This male plug rubs against the antenna rod and doesn't make a good connection, or the connection becomes dirty. On deep-well antennas, moisture gets in. causing noisy and weak reception. An ohmmeter will show this up. Be sure that this kind of antenna is bonded well at the top and bottom straps on the antenna assembly.

In some cases, motors in the elec-tric-powered antennas burn out, and sometines, surprisingly, this is the fault of weak or rundown batteries. The nylon strip that raises and lowers the telescoping antenna tends to stiffen, requiring more power to move it. A weak battery will make the motor run more slowly than normal. and the user's normal reaction is to hold the switch until the antenna is where he wants it. As a result, the motor overheats and sometimes burns out.

Parts for these antennas can be picked up at automobile parts houses or ordered through then.

Many antenna gadgets are on the market - boosters. replacement antenna stalfs. false antennas. There are several types of antenna boosters, one for which you cut the mast in two and install with self-contained screws. Some other types plug between antenna and lead-in. These were designed for dual rear mounts to improve long-distance reception. Some dual types claim to double the volume of regular antennas, but even with boosters they do not match the gain of front-cowl mounts. END


\title{
Quick and Dirty Heat Sink
}

\section*{By ROY E. PAFENBERG}

MOUNTING TRANSISTORS AND SIIICON rectitiers on aluminum or brass posts provides a neat. workmanlike method of installation and. at the sance time. gives a bonus in the form of a remarkably effective heat sink.

The term "heat sink" is relatively new in the common vocabulary of electronics. Despite this, those who work with the various semiconductor devices must have a working knowledge of the subject. Semiconductors are physically small and all of them have a maximum operating temperature that may not be safely exceeded. Theretore, the powerhandling capability of a transistor or diode is limited by the heat that can be radiated by the device and its heat sink.

The Sarkes Tarzian Silicon Rectifier Handhook states, as a rule of thumb, that each square inch of heat sink surface will radiate 8 mw of power per \({ }^{\circ} \mathrm{C}\) above the ambient temperature. The radiating capability of a heat sink may then be roughly approximated by:
\(P_{m 0}=\) Area (sq. in.) \(\times .018 \times \mathrm{T}_{\mathrm{r}}\) where \(P_{m}\) is the maxinum power radiated: \(T_{r}\) the difference between the maximum operating temperature of the device and the ambient temperature in \({ }^{\circ} \mathrm{C}\).

Aluminum or brass mounting posts offer several real advantages. particularly when an insulating chassis is used and the diode or transistor is operated somewhat short of the maximum rating. which might require a more claborate heat sink. For example, calculation will show that the effective vertical surface area of a \(1 / 2\)-inch diameter round post 2 inches high is 3.14 square inches. Applying the formula shows that for a maximum allowable temperature rise of
\(50^{\circ} \mathrm{C}\), this post will radiate roughly 1.25 watts of power.

This method may be extended to supporting posts of any size and configuration. The silicon rectitiers shown in the photo mount by \(10-32\) threaded studs. The posts should be drilled and tapped to suit the device being mounted. A machine serew and lockwasher will secure the post to an insulated chassis. For a metal chassis. use conventional extruded insulating washers without regard for their thermal characteristics.

While these calculations of heatsink efficiency are perhaps oversimplified. they do produce useful approximation. The mounting methods certainly do not meet all semiconductor device mounting requirements, but they do provide a simple. low-cost answer to many difficult installation problems. END



\title{
Zener-Stabilized DC Amplifier
}

Zener diodes and a power transistor clamp operating voltages in this stable general-purpose dc amplifier
industry and research have many practical uses for a stable, low-drift dc amplifier: extending the range of a dc scope, reading de millivolts direct from a bridge circuit, or as a thermocouple.

With Zener diodes, there is now an excellent way to stabilize operating voltage and current, so important for dc amplifiers. By regulating the B-plus, bias and heater supplies, I built a fairly driftfree dc amplifier (Fig. 1). These are its specifications:
1. Input impedance high, 2.5 megohms.
2. Output impedance low, 500 ohms.
3. Voltage gain minimum 50, actually over 60.
4. Direct readout for static measurements. Meter used with this amplifier indicates \(\pm 5\) volts full-scale output, with an input of 20 mv per volt output when the amplifier's gain is set at 50 . Meter can be switched off for dynamic operation.

By ALEX M. SCHOTZ*
5. Calibrated voltage source. It can be used to check or adjust gain. The \(100-\mathrm{mv}\) source is brought out to terminal post in rear.
6. Good regulation. Power-line voltage can fluctuate from 90 to 135 without change in operation or calibration.
7. Frequency response flat from 0 cycles (de) to \(\mathbf{3 0} \mathbf{k c}\); down 5 db at 100 kc.
8. Output voltage before clipping approximately \(\pm 12\).
9. Signal-to-noise ratio at 10 vrms output better than 70 db down.
10. Common ground input and output (galvanic ground). Polarity reverses from input to output, but can swing equally in either direction.

Construction is simple. The heater-


A RADIO-ELECTRONICS Editor who tesied Mr. Schotz's amplifier re ported that it "does exactly what the auther says if will. After 10 15-minute warmud, unit does not drift more than
or 2 divisions on the meter, opparently because of line-valtage variations. (Each division is \(10 \mu \mathrm{Ha}\). Frequency response flat over entire audio range When switched in and out between audio generato and scope, no apparent change in waveform. Max imum output voltage ranged between 10 and 12 Beyond that point, amplifier started to clip."
regulating power transistor is mounted on a piece of aluminum \(3 \times 3 \times 1 / 8\) inch, painted black (except under the transistor) and "floated" above the chassis (electrically) on Lucite. Most of the small parts are placed on a terminal strip \(51 / 2 \times 15 / 8 \times 1 / 8\) inches (Fig. 2). Take normal precautions in wiring the input; the input impedance is high.

The circuit works this way: signal voltage, either dc or ac, is applied to the input terminal and reaches the control grid of the 6AN8 pentode section via the

\footnotetext{
*Outboard Marine Research Center, Milwaukee Wis.
}

\title{
New 1964 Heathkit All-Channel Color TV
}


\section*{GR-53A \\ \({ }^{5} 399^{00}\)}
(Includes chassis, all tubes, VHF \& UHF tuners, mask, mounting kit, \& special speaker) cabinet optional \(\$ 49.00\)

\title{
Everyone Agrees It Outperforms Any Other, Is Easy To Build, \& Saves Up To \$400!
}

\begin{abstract}
Herc's What The Experts Say! Popular Electronics, May issue: "The GR-53A is not a skimpy receiver in which corners have been cut to keep costs down and still provisle color TV. Instead, the GR-53A (on a comparison shopping basis) has the same color and sound fidelity, flexibility, and case of handling as those manufactured receivers which sell for over \(\$ 600\)."
Radio-TV Experimenter, June issuc: "The repair cost savings during the Heath Color TV set's life compared to commercial units may be more than \(\$ 200\)."
Popular Mechanics, February issue: "Mounted, prealigned critical circuits enable beginners to assemble. Picture quality is topnotch."

Science \& Mechanics, April issuc: "Builtin servicing circuits such as a dot generator are valuable aids in getting the set operating for the first time \& eliminating expensive service calls \& bills when realignment or part replacement is needed later on."
Anyone Can Build It: No special skills or knowledge required . . . all critical assemblies are factory-built \& tested . . . simple check-by-step instructions take you from parts to picture in just 25 hours! Here's what one Heathkit Color TV owner, Mr. 'Thomas R. McMahan of Cincinnati, Ohio says about the GR-53A manual: "I would consider the manual to be equal to a lifetime of warranties with an ordinary television."

Exclusive Built-In Service Center Eliminates Maintenance Costs! You adjust and maintain the GR-53A yourself with the degaus.
sing coil, service switch, and built-in dot generator! No more costly TV service calls! No other set has these self-servicing features!

No Expensive Service Contract! Since you maintain the set, there's no need for a costly service contract. Heath warrants the picture tube for 1 year, all other parts for 90 days!
Keep Your Present TV As A "Sccond" Set! Many manufacturers require your present set as a trade-in to qualify for their adver tised price. With Heath, no trate-in is required! . . . your present set becomes a hancly "second" set for use in den, children's room, bedroom, etc!

Quality \& Performance Comparable To Sets Costing \(\$ 600\) \& More! Mr. J. I. Newton of Chapel Hill, N. C. is even more enthusiastic about the perforinance of his Heathkit Color TV: "My friends tell me the color is better than they have seen on sets costing \(\$ 895\), and 1 must say that I agree."
Compare These Additional Features: 0 26tube, 8-diode circuit - Deluxe Sandard Kollsman VHF tuner with push-to-tune fine tuning for individual channels. 2 thru 13 - New transistor UHF tuner for channels 14 thru 83 - High definition \(70^{\circ} 21^{\prime \prime}\) color tube with anti-glare bonded safety glass - 24,000 volt regulated picture power - Automatic color control \& gated AGC for peak performance - 3 -stage high gain video I.F. Line thermistor for longer tube life - Thermal circuit breaker for component protection.
\end{abstract}

Cabinct Or Custom Installation! After assembly, just slip the complete unit into the handsome GRA-53-6 walnut-finished hardboard cabinct! Or, if you prefer, mount it in a wall or custom cabinet.

Enjoy Completc TV Reception Now! . . . by ordering the new 1964 Heathkit 21" High Fidelity Color TVI

Kit GR-53A, chassis, tubes, mask, VHF and UHF tuners, mounting hit, speaker, 121 lbs.
\(\$ 399.00\)

\section*{GRA.53.6, walnut.finished cabinet}

53 lbs.
. \(\$ 49.00\)


\(\mathrm{Cl}-500 \mu \mathrm{~F}, 25\) volis, electrolytic
C2, C3-40 \(\mu \mathrm{f}, 450\) volts, electrolyti
D1-10.v Zener diode, \(3 / 4\) watt (International Rectifier D2 D4 D5
2, D4, D5, D6, D7-27-v Zener diodes, \(3 / 4\)-wotf (International Rectifier 1N1517)
D3-5.6.v Zener diade, \(31 / 2\)-woll (International Rectifier D8 D9 DI
, Dio, D1I- \(500-\mathrm{ma}\) silicon rectifier (Sarkes Tarzian M500 or equivalent
D12, DI3-150-ma silican rectifier (Sarkes Tarzian Ml50 or equivalent
J1, J3, J4-5-way binding posts
12 -cooxial microphone connector
\(\mathrm{M}-500-0-500-\mu \mathrm{o}\) meter (Simpson 27, or equivalent)

Q-2N278 (Motorola)
R1, R9- 100 ohms, \(1 / 2\) watt, \(1 \%\) R2-pat, 2.5 megoh ns, lineor R3- 10.000 ohms, \(1 / 2\) wott, \(1 \%\) R4, R8- 47 ohms, \(1 / 2\) watt, \(1 \%\) R5- 150.000 ohms, \(1 / 2\) watt, \(1 \%\) RO-330 ohms, 1 wott
R10- 2.2 megohms, \(1 / 2\) watt, \(1 \%\)
R1I-15,000 ohms, 1 watt
R1 \(2-5,000\) ohms, 10 watts
R13-10 000 ohms 1 wott
R14-75 ohms, 2 wotts (or two 150 -ohm 1 -watt resistors in parallel) R15-5 ohms, 10 watt

\footnotetext{
R16. R17- 10,000 ohms, 10 wotts
R18-10 ohms, 10 walts
All \(1 \%\) resistors law naise types
S1. S2-spit toggle switches
T1-power trarsformer, \(135 \mathrm{v}, 50 \mathrm{mo} ; 6.3 \mathrm{v}, 1.5\) o (Triad
R-30X or equivalen 1 )
T2-filoment transformer, \(12.6 \mathrm{v} \mathrm{ct}\),1.5 o(Triod F-25X or equivalent)
Chassis, \(7 \times 7 \times 2\) inches (Bud AC. 405 or equivalent)
Cobinet to suit
Pilot lamp
Miscellaneaus hordware
}

1958...the RCA Radlo-Phone Series
1959...the RCA Mark VII
1963...the RCA Mark VIII

\section*{and now 1964... The NEW ifo Mandin old}


RCA, a pioneer in the development of citizens' band radio, has been providing quality equipment since the inception of the Class D Citizens' Radio Service in 1958. Now, these years of experience culminate in the great new RCA Mark Nine.
- 9 fixed crystal-controlled TRANSMIT/RECEIVE channels, separately controlled
- All-channel continuously tunable receiver
- Illuminated meter and working channel indicator
- Push-to-ta'k ceramic mike with coiled cord
ontr s13475*
AC UNIT

*Optional User Price
The Most Trusted Name in Electronics

NEW! Combination " S " Meter and Relative RF Output Meter " \(S\) " Meter indicates the relative strength of incoming signal in " S " units. RF Output Meter (EO) indicates relative strength of the sig. nal being transmitted.

NEW! Spotting Switch
Permits precise manual tuning of receiver without use of receiver crystals. Receiver can be tuned (or "spotted") quickly to any incoming channel. This means, when you buy crystals for extra channels, you can (if you wish) omit the RECEIVE crystals and buy only TRANSMIT crystals.

\section*{NEW! External Speaker Jack}

Lets you connect an external speaker to the set, so incoming calls can be heard in remote locations.

Get all the Facts Before You Buy.
Mail Coupon Today. Paste on 4s Post-Card



Heater-regulating transistor is mounted on sheet alwmintam heat sink, insulated from chassis with clear plastic block.


Fig. 2-Terminal board carries most of the wiring. It's optional.
attenuation control. This signal voltage is then amplified and the output from the pentode plate coupled through a Zener diode to the grid of the 6AN8 triode section. Using the Zener diode (D2) and the negative supply. puts the output of the cathode-follower 6AN8 triode section at the proper level. When the circuit is properly balanced, this permits the signal voltage to swing in either direction from ground (zero reference). With the GAN8 triode operated as a cathode follower, the output impedance is low.

To balance this amplifier, let it warm up 10 minutes and turn the gain control fully counterclockwise. Switch the meter on, and adjust the balance control so that it shous a null (zerocenter).

For dynamic output (when the signal varies) the meter should be switched off and the output applied to an appropriate readout device, like a scope or counter.

The meter can indicate potential directly from a static potential source. You can measure voltage by comparing the output from the calibrated voltage source to that of the measured point.

By presetting the gain with the calibrated voltage, the amplifier can be used as a decade amplifier, or as a millivoltmeter with a high input impedance for static potentials.

Answers to


This month's puzzles are on page 47

\section*{Autotransformer}

Ammeters AI and A3 each read 10 amperes. The primary and secondary currents in an autotransformer are \(180^{\circ}\) out of phase (in phase opposition). They tend to cancel in the part of the primary winding which includes the secondary windling.

Taking into consideration a winding ratio of 2 to 1 , and a secondary current of 20 amperes, the apparent primary current (and hence the apparent reading on A1 and A3) would be 10 amperes. Since the primary and secondary are \(180^{\circ}\) out of phase, the total primary current is the algebraic sum of the two, or 10 amperes.
Note: Core and winding losses are disregarded.

\section*{Case of the lost energy}

This is really not as simple a problem as it looks. Suppose our problem circuit looked like this instead.


Now. for a time after closing the switch. current will flow through the resistor until the capacitor charges have become equal. Here in this resistor is a good place to get rid of energy, turning it into heat. Since we must conserve energy, the heat energy produced by the resistor evidently must be equal to the energy lost by the capacitors. Now what if we change \(R\) to a different value? If \(R\) gets bigger, the current flows for a longer time. but is weaker. If R gets smaller, the current flows for a shorter time, but is stronger. The energy dissipated in the resistor is independent of the value of the resistance and exactly equal to the difference between the initial and final values of capacitor energy.

Because of this, if we have any resistance in the circuit at all, we have explained where the energy went. In any practical problem, the small circuit lead
resistance would heat up and dissipate this energy. Since most energy values normally found in capacitor circuits are generally very small. this heating effect is not very noticcable. As an example, a 25-watt light bulb in 1 second dissipates or expends 25 joules of energy or 10,000 times as much energy as that left in our capacitor problem!

This explains any practical problem. But what if there were absolutely no resistance in the circuit at all? Then there would be another way out of the problem. Near ahsolute zero ( 460 F). we may have zero circuit resistance. But always, no matter what the temperature, we must have some lead inductance. Let's drave this into the circuit.


But this is a resonant circuit! It will oscillate. If it oscillates, it will radiate radio-frequency energy. And, the energy it radiates will be exactly equal to the difference between the initial and final energy in the circuit.

Any reasonable value of lead resistance will damp this circuit and it will not oscillate, so the resistance "wins" if it has half a chance.

\section*{Doodles in May}

The scope trace in the May 1964 issue can also be produced by quickly moving the Horizontal position knob when the same frequency is put into both horizontal and vertical inputs, out of phase so as to produce a circular Lissajous figure. By noting whether the cusps are up or down, you can figure out whether the spot is moving clockwise or counterclockwise. Thus you can tell which input, horizontal or vertical, is leading and which is lagging. I have generated this pattern for the purpose many times.-P'ail Penfield, Jr.

\section*{TV Sound On FM Tuner}

In many parts of the country, people who have an FM section in their radios do not use it hecause there are no local FM stations. But it may be desirable to readjust the FM section to pick up the sound from television channel 6 , if it is in use locally. There are TV programs which are interesting to listen to. such as special events and newscasts or weather reports. Blind persons particularly may wish to receive TV sound only,

The oscillator of an FM receiver may be readjusted to receive the TV sound \((87.75 \mathrm{mc})\) at the low end of the dial and still pick up FM stations (you may lose a few at the high end of the band). Of course, the dial numbers will no longer be correct but for such limited use this is not objectionable.-Hugh Linebeck

SAVE VALUABLE SERVIING TIME with the Model 1400 IN-GRCUIT CAPACIIOR TESTER
eliminates the fime consuming method of unsoldering and resolder-
ing when checking capacitors
volts provided to
prevent
the new low voltage electrolytics used in
transistorized
\(\$ 2950\)
Slightly higher in the West

\section*{FEATURES}
- New, modern rectangular tun-ing-eye indicator...extremely sensitive and accurate
- Large, easy-to-read dial for precision readings
- Line isolated power supply... no shock or short-circuited hazards
- Special storage compartment stores coaxial cable and line cord
- Handsome twotone metal housing
- Fully guaranteed by standard EIA factory warranty


The new Model 1400 IN-CIRCUIT CAPACITOR TESTER cuts capacitor testing time by at least \(75 \%\) and enables you to service more TV sets in less time. It operates with amazing ease. You just connect the test leads across the capacitor incircuit you wish to test... set the range switch and the Model 1400 automatically indicates shorted or open capacitors. It will also check electrolytics, by-pass, coupling, blocking and filtor capacitors, all without disconnecting them from the circuit! The valuable money-making time you save with the Model 1400 will pay for it over and over again.

\section*{SPECIFICATIONS}

\section*{SHORTS TEST}

Detects shorted capacitors of all types in-circuit with shunt resistance as low as 6 ohms.

\section*{OPEN TEST}

Detects open capacitors for all values in-circuit down to 7 mmfd ., with shunt resistance as low as 150 ohms.
V ALUE TEST
Indicates value of electrolytics in-circuit from 2 mfd to 450 mfd .

Available at your local parts distributor


\section*{NOW! Buy or Sell with A non-commercial classified ad}

R RADIO-ELECTRONICS is accepting classified ads from individuals at a new Non-Commercial Rate of \(30 \not \subset\) per word. (Our commercial rate remains at \(55 \not \subset\) per word.)
- This new non-commercial rate will enable you to buy or sell personal items or equipment at little cost.
- See the classified section for details and order form.


This column is for your service problems-TV, radio, audio or general and industrial electronics. We answer all questions individually by mail, free of charge, and the more interesting ones will be printed here.

If you're really stuck, write us. We'll do our best to help you. Don't forget to enclose a stamped, self-addressed envelope. Write: Service Editor, Radio-Electronics, 154 West 14th Street, New York 10011.
a flat-top isn't too bad as a teenage hair style, but it can play the dickens with an audio amplifier! One often unsuspected trouble, especially in fairly high-powered audio amplifiers, is clipping of the tops of the signal. This gives an unusual-sounding distortion, hard to describe but readily apparent when you listen to it. (This is the kind usually described by the customer as "It sounds Blaaaaah!") Scems to take place mostly on high-level sound. And it's quite possible for an amplifier to clip on lows and not on highs, or vice versa.

Quick check: look for it with a scope. Fig. 1 shows a sine-wave (sin-gle-tone) signal going through an amplifier with no clipping, and Fig. 2 shows the same signal with clipping. (The distortion here is actually caused by the odd-ball harmonies generated by the square-wave shape that the sinewave signal gets made into.) This waveform was taken from the output plate, but you can check at any grid or plate all the way from the input.

Note that Fig. 2 shows both tops and bottoms of the waves clipped. This usually means that the trouble is taking place before the phase inverter or in the phase-inverter itself. Trouble in either one of the output tubes mostly shows up as clipping of either top or bottom alone. (Unless the clipping is due to simple overloads, but you can check that by reducing the input signal level.)

Common causes: drift in bias resistors, plate load resistors, screen-grid resistors, etc.; gassy tubes or tubes with grid emission in high-gain preamps. The most common cause, coupling capacitors with just a wee bit of leakage.

This often shows up in guitar amplifiers. Get someone to hit a chord on the guitar. This gives you several frequencies at the same time, and most of 'em are pretty pure sine waves. (I know that a lot of guitar players sound anything but pure, but that's the way they'll look on a scope!) At any rate,
set the amplifier gain as high as posgain so that you can see the tops and bottoms of the waves. You may see, as I did on the last one, quite a few pretty good waves, and a few in the background with very distinct "flattop" haircuts! This is a sure sign of distortion.


Fig. I-Clean sine waves near amplificr's mavimum output mean that it's working proty well.


Fig. 2-Flat-topping like this is artible as harsh, gritty sound. If it isn't due just to overdriving the amplifier. look for shifted resistor values or leaky coupling capacitors.

A scope is about the only instrument that will definitely show up this kind of distortion. You won't get very much difference in the grid voltage readings, even with a vtvm, and the
leakage will be so small that you could even pass the capacitors on a test, but if it shows up flat-topping, I'd change the coupling capacitors on general principles.

Of course, with a guitar amplifier, sometimes the player tries to get more and more volume by cranking up the gain further. Since the amplifier can put out only its rated power, this kind of overdriving can cause distortion that isn't the amplifier's fault.

Incidentally, if you don't happen to have a tame guitar player around, you might try playing a guitar record through the amplifier. Probably better get one of the "classical" types or something like Chet Athins, rather than some of the "surfing" type music. (That is, if youre looking for distortion, don't start out with it!)

\section*{Buzz in sound-good picture}
\(I\) can't get picture and sound together on an RCA KCS-49A. Detune the fine tuner to one side of the best picture, and the sound is good. If I set up for the best picture, the sound develops a loud buzz. Could this trouble be in the tuner?'-J. B., Brooklyn, N. Y.

Possible, but unlikely. The most likely cause of this trouble is misalignment, of either the sound i.f. or video i.f., or both. This kind of trouble is quite common in the fringe arcas, but not too often encountered in strong-signal areas, unless it is due to age troubles.

I'd recommend setting the tuner up on a strong signal for the best picture, then trying a "twiddling" adjustment on the sound, especially the discriminator transformer. See if you can clear up the buzz. While "random experimental adjustments" often lead to trouble in i.f. stages, in this case it's worth a try. If this doesn't cure it, you're going to have to run a complete realignment of the whole set anyhow!

Check all parts and tubes in the sound i.f.'s, especially the electrolytic capacitors, and the matching of the resistors across the discriminator output,
etc. Check the 6AI.5 tube for equal emission on both sides.

The video i.f.s are a stagger-tuned 20-me strip in this set. If you have a "droop" in the curve near the sound end. it can caluse this kind of trouble. Run a single-signal alignment of the whole strip, then sweep it. to see if the curve is the proper shape.

You can check age action in this set by overriding the bias while watching the screen and setting the tuner. If this clears up the buzz, check out the age circuit. especially the bypass capacitors in and around the tuner agc.

\section*{Vertical blanking for KCS-72}

I can't find a place to get a vertical retrace blanking pulse on an RCA KCS72 chassis. I need a hegative pulse. Can I get this from the grid of the \(6 K 6\) B' \(^{-}\) H. P., Minneapolis, Mimn.

In this circuit, which uses an autotransformer, you can get negative-going pulses from the grid circuit of the vertical output tube.

Feed them through a differentiating circuit consisting of something like a .002 -, f capacitor and an 8.200 -ohm resistor in series. You'll need a spike of voltage, not a saw-tooth pulse. Try different part values for different circuits. If the retrace lines get worse when you connect the pulse. you've got the wrong polarity. Either reverse the polarity of the pulse or feed it to the other element of the CRT. Incidentally, blanking can be applied to the signal element, since the pulse should have no effect during picture-signal time. only during retrace time, when the beam should be blanked anyhow.

\section*{Momentary vertical roll}

One of my customers complains bitterly because his TV sets rolls up a frame or two when there is a change in pictures, as when the station switches from program to commercial or from local to network programs. I've checked the set, and con't find anything wrong with it. The vertical hold is sood.-A. P., Los Angeles, Calif.

This "flipping" on changes of program material isn't uncommon at all. Many sets do it. and it can be pretty difficult to stop entirely. When a TV station changes from local to network program material. there is necessarily a change in syne: from locally generated sync to network sync. Even from local live to film camera, there is a change. Each camera may have its own sync generator. So. if there is a difference of a fraction of a frame in phase betwen the two pictures. there will be at the very best a slight jump. If the sync catches the vertical oscillator halfway between frames, then the picture will roll up, usually.

Some of this may be due to the way the customer is operating the set. If he has a habit of setting the vertical hold so that the picture is just barely locked in. in either direction, any disturhance can cause a momentary loss of sync. Also. check the picture proportions: if the picture is overscanned vertically, stretched. it will lose a great deal of its holding ability. Set it up for about \(1 / 2\) inch overscan at top and bottom, and the hold will be at maximum.

Tell the customer to set his vertical hold control near the center of its range. This will give him maximum stability, and the worst that should happen on picture changes will be a slight jump, as the new sync takes over.

You might also check the tiny vertical integrators used in this set. They are special "res-cap" combinations, and one of them could be leaking. This chassis should have very good "snap" in the vertical circuits; if it doesn't find out why.

\section*{Vertical troubles}

When a Radio Craftsmen RC200 TV is urned on, the picture culmost fills the screen, except for 3 inches from the bottom. After the tuhes warm up thoroughly, the picture is omly about 5 inches high, perfectly centered on the tuhe. It's in sync, showing only lack of height. Filters all good, tubes test good. Any suggestions:"-D. B., Midland, Mich.

Lots of 'em! Most of this trouble is due to weak tubes. Always test them by replacement; a tube-tester reading is sometimes misleading. especially in vertical output stages.

Check operating voltages on both oscillator and output stages. I helieve you're going to find a defective resistor somewhere in the oscillator stage, because you say the picture is linear, though small. The worst offender in these cases is the oscillator plate load or dropping resistor, which is sometimes the same. If the oscillator plate is fed from B-plus boost. there may be an extra dropping resistor in there, around 150.000 or 270.000 ohms. Check it for drift in value under load.

\section*{Metal-glass CRT conversion}

Can I use a glass 21ZP4-B picture whe in an RCA 217207 TV set to replace a metal 2lap4? Will the glass tube fit in the sponge-rubber mount on the fromt. or will I have to modify it?C. H., San Antonio. Tex.

First question. yes. The 21ZP4-B is an exact replacement for the metal tube electrically. The -ZP4 is just a fraction of an inch longer overall.

As to the rubber mount, a lot of RCA's used a sort of plastic "socket"
affair on the front (mask) which could be converted to hold the face of a glass tube by just cutting out some parts with a good sharp pocket-knife. These were the cabinet-mounted tubes. and the straps that held the original tube can be used to hold the new one. Best way: place the cabinet face down on an old quilt. etc. Carefully set new tube down on the plastic mask. Note where cutouts need to be made, then trim the mask until the new tube drops down against it to make the front look neat. Install the straps, tighten well and the job is done.

\section*{Scott TV}

I am enclosing a copy of the operating instructions for a TV set I just got in. It's a "Scott", and I can't find a schematic for the thing anwwhere. Can yout help me? -J. T., Brooklyn, N. Y.

Not too much. I'm afraid. However, even though I couldn't find any information at all on this brand name. I did notice one clue. On the back of the sheet you sent were the tiny letters "WG \& C Series N7I." This means that the set was originally built by the WellsGardner Co. for whoever sold it under the name of "Scott".

You can probably get the data from Wells-Gardner. Their address is WellsGardner Co., 2701 N. Kildare Ave., Chicago 39, Ill. Send to the service department.

If this doesn't work, try the "similarity method" we use so often. Get a schematic of another set made by WellsGardner using the same tubes, and you'll probably find it checks out pretty closely with the one you have.

\section*{Change Inputuner to newer type?}

Is it possible to change the Inputuner on a DuMont RA-I03 TV set to one of the newer types?-R. N., Brooklyn. N. Y.

Your worst trouble here will be size: the original Inputuner was pretty small. However. Standard Coil now has a line of very small tuners, and one of them should be small enough to fit this chassis. Get the new Standard Coil catalogue and check the dimensions. (Be sure you pick a 20 -me type!)

Electrically, there is only one possible change. The DuMont has the first video i.f. coil on the chassis instead of inside the tuner. Try connecting the tuner output directly to the video i.f. grid, disconnecting the original first i.f. coil. If that doesn't work, short out the coil in the tuner and reconnect the original. Give the whole video i.f. a thorough sweep alignment, and you should wind up with a very nice job. END


Fast Service . . Simply send us your defective tuner complete; include tubes, shield cover and any damaged parts with model number and complaint.

90 Day Warranty
Exact Replacements are available for tuners unfit for overhoul. As low as \(\$ 12.95\) exchange. (Replacements are new or rebuilt.)
CASTLE TV TUNER SERVICE, INC. 5715 N. Western Avenue, Chicago 45, III. New Eastern Location
41-96 Vernon Blyd., Long Island City 1, N.Y. In Canada: 136 Main St.. Toronto 13, Ont. * Major Parts are additronal in Canada

\section*{NEW! Winegard BOOSTER COUPLER}


Winegard engineers have used two of the new 6 HA5 ampliframe shielded triode tubes and new circuitry to create the all new Winegard Booster coupler that dramatically increases signal power \& cuts noise to a minimum. This increased power means 8 DB gain to each of 4 outputs, reducing snow, picture smear and interaction between sets.
FM gets a boost in this new circuit as well, because it covers the entire FM Band \(88-108 \mathrm{MC}\). The new BC-208 Booster Coupler is another forward-looking product from Winegard providing better color, black and white and FM reception. Ask your distributor or write today for spec. sheets.

3013

\section*{AUDIO EQUIPMENT REPORT}

\section*{Sonotone Mark IV Ceramic Cartridge}
an important area of aumio progress which has not received the recognition it deserves is the recent improvement of ceramic phono cartridges. Virtually since the begimning of the hi-fi era in the late 1940 's. magnetic cartridges dominated the field. Crystal and ceramic models were used mostly where low cost was more important than high fidelity. This concept has been challenged lately by a few quality ceramics offering. at a modest price. performance comparable to that of many magnetic cartridges. A case in point is Sonotonc's Velocitone Mark IV stereo cartridge, model 9TAHC.


\section*{SPECIFICATIONS}
(All specifications are the manufacturer's)
Frequency response: within 2 db of RIAA characteristic from 20 to 17.000 cycles. Deliberate rolloff to 20.000 cycles
Separation: 30 db
Stylus mass: 3 mg
Compliance: \(15,10^{-4} \mathrm{~cm} /\) dyne in all directions Tracking force: 1.5 to 3 grams for professional arms; 3 to 4 grams for changers
Output voltage: \(7 \mathrm{mv} / \mathrm{ch} a n n e l\) with equalizers 0.2 v/channel without equalizers

Recommended load: 47.000 to 100,000 ohms with equalizers; 1 to 5 megohms without equalizers
Weight: 3.2 grams
Unlike most current high-fidelity cartridges. 9TAHC is a turnover design with dual-tip stylus. One side has a 0.7 -mil diamond for microgroove dises, the other a 3 -mil sapphire for 78 s. Serious collectors who still like to spin their vintage records once in a while will find this a great convenience. The 78 -rpm styli for magnetic cartridges are hard to come by. and often a cartridge change is necessary between LP's and 78's.

Taking the Velocitone from its box, you notice that no stylus guard is provided. It isn't necessary. The so-called Sono-Flex anchorage of the stylus shank in butyl rubber is so compliant that it is virtually impossible to damage the stylus. No matter how it is bent, it snaps right back into proper alignment. If the tone arm is accidentally dropped or scraped across a disc. the elasticity of the stylus mount protects the record and prevents chipping the diamond. This design makes the cartridge resist rough handling and eliminates the need for additional protective devices in the tone arm.

The high compliance of \(15 \times 10^{-8}\) cm /dyne in all directions accounts for the light tracking of the Velocitone Mark IV. When mounted for testing in a high-
quality tone arm (Grado). the cartridge tracked most music at 1 gram stylus pressure. It had no trouble in even the heaviest orchestral passages at inner record diameters at 1.5 grams pressure-a feat that only top-rank magnetics will equal. In automatic record changers the recommended tracking force is 3-4 grams.

Specified frequency response is 20 17.000 cycles \(\pm 2\) db with a deliberate rolloff to 20.000 cycles. When plugged directly into a high-impedance amplifier input ( \(1-5\) megohms), the cartridge automatically equalizes the RIAA recording curve. For amplifiers that have no separate input for ceramic or crystal cartridges. two plug-in equalizers are provided, one for each channel. With these equalizers on the input cables. the cartridge can be hooked up to any magnetic phono input without mismatch.
( Bear in mind. though. that old 78 s were not recorded with the RIAA curve. When the cartridge is used to reproduce such dises. the bass must be reduced and the treble increased with the amplifier tone controls.)

Listening tests revealed that the character of individual instruments and of the human voice comes through quite free of artificial coloration. Despite the length of the stylus cantilever, its total moving mass is only 3 milligrams, which probably accounts for the absence of resonance peaks within the audible range. Percussive transients sound clean and snappy, without a trace of blur. and \(30-\) db separation keeps stereo directionality clearly defined.

In A-B comparisons it seemed that the Velocitone did not quite equal the transparency of sound of the most advanced magnetic designs in heavy orchestrations. This difference was detectable only on an extremely fine speaker system. Surface noise was quiet and un-obtrusive-further indication of peakfree response. Thanks to the high compliance. needle talk was very low.

Being nonmagnetic. the Velocitone cartrilge is immune to hum. In humplagued sound systems. replacing a magnetic cartridge with a Velocitone might he advisable as a quick way to cure the trouble. And low-fi phonographs will be spectacularly improved if the Velocitone is substituted for stiff-jointed cartridges. The output of 0.20 volt per channel is sufficient without preamplification. With equalizers for magnetic inputs, the output is reduced to 7 mv so as not to overload the preamps. The cartridge can thus be used with virtually any phono amplifier.

If any criticism can be leveled against this Sonotone design, it is that the terminal pins are too close together,

\section*{PRIOUH \\ }


\section*{The value of a name}

Dealers have long found that SILVER SCREEN \({ }^{(1)} 85\) picture tubes move off the shelves fast. Why? One big reason is the tube's precision-engineered features. Another is that through the years these same features have created the guaranteed acceptance of a name - SILVER SCREEN 85. In picture tubes no brand name approaches the assured recognition of SILVER SCREEN 85 tubes. To your customers, the name means built-in quality and long life depencability. To you, SILVER SCREEN 85 picture tubes mean sales, profits, fewer callbacks, better satisfied customers. - Sylvania values that acceptance and safeguards it by applying every new research and development technique for product improvement. That's why the newest SILVER SCREEN 85 picture tubes have longer life and greater product uniformity. - Stay with the quality name in TV picture tubes-SILVER SCREEN 85. See your Sylvania Distributor.

\section*{TUNER REPARS}

Includes ALL parts (except tubes)... ALL labor on ALL makes for complete overhaul.

\section*{\$950.}


\section*{FAST, 24-HOUR SERVICE with FULL YEAR WARRANTY}

Sarkes Tarzian, inc., largest manufacturer of TV and FM tuners, maintains two completelyequipped Service Centers, offering fast, dependable tuner repair service. Tarzian-made tuners received one day will be repaired and shipped out the next. More time may be required on other makes. Every channel checked and realigned per manufacturer's specs. Tarzian offers full, 12-month guarantee against defective workmanship and parts failure due to normal usage. Cost, including all labor and parts (except tubes), is only \(\$ 9.50\) and \(\$ 15\) for UV combinations. No additional costs. No hidden charges. You pay shipping. Replacements at low cost are available on tuners beyond practical repair.

Always send TV make, chassis and Model number with faulty tuner. Clieck with your local distributor for Sarkes Tarzian replacement tuners, parts, or repair service. Or, use the address nearest you for fast factory repair service.

SARKES TARZIAN, INC. TUNER SERVICE DIVISION

Dept. 200
537 South Walnut St., Bloontington, Indiana
Tel: 332-6055

Dept. 200
0654 Magnolia Blvd., North Hollywood. Calif Tel: 769-2720
making it difficult to keep the pin jacks from touching each other.

The price of the Velocitone Mark IV with diamond tip for microgroove and a sapphire for 78 's is \(\$ 20.25\) (model 9TAF-SDHCV). An alternate model with two diamond microgroove tips to provide double LP stylus life sells for \(\$ 24.25\) (model 9TAF-D77HCV). On both models the styli are instantly re-placeable.-Hans Fantel.

\section*{Bogen RT1000 Transistor AM-FM Stereo Receiver}
the bogen rtiono is an impressive instrument. Sounds fine, too. The only things to tip you off that it's all-transistor are the almost instant start (no warmup) and the hiss (back to that in a moment).


\section*{SPECIFICATIONS}
(All specifications are the manufacturer's) Power output: 50 watts per channel, 100 watts combined (IHF music waveform rating) Frequency response: \(15-45.000\) cycles \(\pm 1 \mathrm{db}\) Distortion: \(0.6 \%\) at rated output
Hum: -60 db
FM sensitivity: \(2.5 \mu \mathrm{~V}\) IHF
AM loop sensitivity: \(75 \mu \vee\) per meter for 20 db quieting
FM stereo separation: 35 db at 1.000 cycles Monitoring output: Stereo headphones
Antenna: FM built in line with external connec Antenna: FM, buitin ine with external connec-
tion for balanced \(300-\mathrm{hm}\) feed or 75.0 hm coax cable. AM, ferrite loop. External connection for outdoor antenna
Audio sensitivity: Mag. phono 3.5 mv , Tape head 2 mv , aux 0.25 v
Controls: 6-position program selector, loudness, balance, tuning, separate bass and treble, volume, low filter, high filter, tape monitor mode, ohase, afc, power, reverse, output Output impedances: \(8 / 16\) ohms
Outputs: Speakers, tape. third-channel, headphones
Inputs: Mag phono, tape head, aux, tape monitor
Multiplex: Tine-division type with "stereo-mind er" indicator and tape recording filter
Semiconductor complement: 43. 22 diodes Accessories: Walnut cabinet - model WE10 Dimensions: \(16-3 / 16\) in. wide \(\times 4.5 / 8 \mathrm{in}\). high \(x\) 15.13/16 in. deep, including knobs Price: \(\$ 549.95\)

The RT1000 has a line-cord FM antenna built into it, and I was curious to see how it worked. Pretty well, for strong-signal locations (just what you'd expect. really). The only other qualification is that such an antenna seems more prone than even a simple dipole to multipath reception and consequent distortion in stereo. I was surprised at first, until 1 realized that such an antenna includes a tremendous length of wire: the set's cord itself, then who-knows-how-many feet of power wiring in the walls, and so on. And the direction of the wiring is anything but constant. But the receiver's performance with its own antenna was good enough on almost all stations in metropolitan New York to be completely satisfying.

The audio quality is crisp and up to the best modern standards. It's difficult to find anything new to say about it; it's
not really distinguished in any particular way. That's probably the highest compliment one can pay an audio instrument.

Again-a qualification. The hiss I mentioned at the beginning of the report is common to many all-transistor amplifiers and receivers. In this one, it is present even at zero volume. like a faint surf noise. It is more prominent with the volume (loudness) control turned up, but of course it is often masked by program material. Not always, though. At moderate volume settings. during soft musical passages in a quiet room. it is definitely noticeable. More so with earphones.

An unusual feature of the Bogen RT1000 is the way some circuit functions are switched. Pulling the loudness control knob out turns the control into a straight, uncompensated volume control. Pulling out the treble control knob switches in a treble filter (with a sharp pop!). Pulling the bass control puts in a low-cut filter. And (I think this is an especially nice touch) pulling the balance control reverses the channels! This approach increases control flexibility without making the panel look like something out of a spaceship.

If any one thing could be singled out to distinguish the RT1000), it would be that control flexibility. The receiver has about every control and switch feature that could possibly be useful. including afc defeat, channel phase, tape monitor, speaker on-off, in addition to the pullknob ones. Exception: no stereo noise filter. Front-panel headphone jack, though. which is good for a gold star in my book.

The RT1000 can reccive AM, too. Why. I don't know. After spending half an hour or so listening to FM and FM stereo. I switched to AM and was greeted by a mixture of fluorescent-light hash and motor noise, salted with a few dozen treble-less stations. About half of them could be received painlessly with perfect clarity on FM. The RT1000 has no whistle filter.

On the back of the chassis are loud (visual) warnings not to short the speaker terminals. Good idea, for a shorted output is the easiest way to do-in a transistor amplifier in milliseconds. The manufacturer meets the user halfway by spacing the terminal screws an inch apart. making it practically impossible to get a stray wire strand snuck out from under one screw to touch the other. In case someone manages nevertheless, there are fuses.

The back of the chassis also bears a "third-channel" output jack. for connecting a center-channel speaker or mono extension (remote) speakers.

The manual with the receiver is concise but comprehensive, rounding out the favorable overall impression I had of the RT1000.-Peter E. Sutheim


Genuine


CTW IMPROVED
"TO 0 OISER
VOLUME
CONTROL
?
CONTACT RESTORER
FOR TV, RADIO. FM
\&RECORD CHANGERS
NET WEIGHT: 6 OZ
flectronic chemical colap 1) 1 COMm CNIPAW AM AUII Maser city a ms


\section*{- WON'T AFFECT PLASTICS \\ -NON-TOXIC \(-N O N-F L A M M A B L E-N O ~ C A R B O N ~ T E T ~\)}

CLEANS, LUBRICATES, RESTORES AND PROTECTS

FOR TV, Radio, FM , . . Volume Controls, Band Switches, Relays, Push-Button Assemblies, Electrical Contacts. Does NOT HARM precious metals . . . does not change capacities. DOES PREVENT gumming, eliminates binding on automatic record changes.ECONOMICAL - A little Does A Lot!


IN STRICT CONFORMITY WITH ALL FEDERAL, STATE AND MUNICIPAL LAWS \& REGULATIONS
Backed by 15 years of solid experience, the original "No Noise" products retain leadership in the field with an all-new, better-than-ever product! Imitated by many, equalled by no other product for OUTSTANDING QUALITY.

Experienced servicemen the land over insist on the genuine "No Noise" products . . Never misled by cheap imitations, ineffective and sometimes dangerous by-products.
all no-NoISE aerosol products - WON'T AFFECT PLASTICS - NON-FLAMMABLE -NON-TOXIC - NO CARBON TET

New 1964 Jobber Plan! Ask Your Rep. For Details
NO PRICE INCREASE!


5" PLASTIC EXTENDER with Push Button Assembly
Fastens easily and securely for the inest pin-point applications. Invaluable or all kinds of jobs. Positively won't cause shorts.

\section*{ALL PRODUCTS SOLD WITH} MONEY-BACK GUARANTEE

\author{
ALL FREIGHT PREPAID
}


\section*{NEW SAMS BOOKS}

\section*{Introduction to Microelectronics \& Integrated Circuits}
by Allan Lytel. Provides a clear explanation of this increasingly significant development. Tells you what microelectronics is, how these astonishingly small integrated circuits are designed, how they work and how and where they are used. Includes special glossary of terms to help you understand and work with miniature components and circuits. Chapters include: What is Integrated Flectronics; Integrated Circuit Design. Printed Circuits. Micromodules Circuit Design Microcompo 160 pages; \(51 / 2 \times 81 / 2^{\prime \prime}\).

\section*{Science Projects in Electricity/Electronics}
by Edward M. Noll. Like the two preceding volumes in Edward \(M\). Noll. Like the two preceding volumes in this series, this new hook presents useful con suction projection which learn basic principles as he buids. Fach individua project, when completed, is a useful jiece of equip ment. Detailed drawings, numerous photographs, and complete parts lists make construction easy, Projects include: Audio Power Amplifier; Crystal controlled RF Oscillator; RF Amplifier; FM Tuner and Antenna System and others. A valuable and instructive book for hobbyists, students, and do-ityourselfers. 128 pages; \(51 / 2 \times 81 / 2^{\prime \prime}\). Order SPN-1, only...
\(\$ 295\)
Tape Recorders-How They Work-New 2nd Edition This popular book for tape recorder owners and repair technicians has been fully revised and com pletely updated. Explains the principles of magnetic recording; covers mechanisms and components; describes the various types of tape recorders; gives test procedures. Comprehensive and easy-to-read Includes numerous illustrations and charts. A valuable reference book for everyone interested in tape recording. 224 pages; \(51 / 2 \times 81 / 2^{n}\).
Order TRW-2, only.
\(\$ 395\)

\section*{Electronic Gadgets for Your Car}
by Len Buckwalter. This practical projects book includes complete instructions for building numerous electronic gadgets for automobile use Projects include a tachometer, a transistorized battery checker and charger, a handbrake protector, and other practical automotive electronic devices. Do-it-yourselfers and auto mechanic hobbyists will find this a fascinating book All projects are easy to construct parts used are readily a vailable. 128 pages; \(\$ 295\) \(51 / 2 \times 81 / 2^{\prime \prime}\). Order CAR-1, only

\section*{Microwave Test \& Measurement Techniques}
by Allan Lytel. The first comprehensive book on microwave tests and measurements. Clearly written for easy understanding by technicians, engineers, and students. Of special value to technicians inter ested in entering the microwave field. Fully describes microwaves; covers the various applications; explains how to test and measure microwave power, impedance, attenuation, frequency, noise, etc. In cludes special chapters on radar equipment and microwave tubes. 224 pages; \(51 / 2 \times 81 / 2^{\prime \prime}\); hard- \(\$ 6^{95}\) bound. Order MIL-1, only

\section*{Closed-Circuit Television Handbook}
by Leon A. Wortman. Now-an authoritative guide to closed-circuit TV systems and applications. Absolutely the most comprehensive book on the subject Provides a complete explanation of closed-circuit TV, the equipment used, applications in every conceivable field. Covers microwave relays, circuits, and service. Easily understandable for the inter ested nontechnical reader; invaluable for technica personnel involved in planning, installing, operating and maintaining CC'TV. Fully illustrated and in dexed. 288 pages; \(51 / 2 \times 81 / 2\); hardbound. Order CLC.1, only . . . . . . . . . . . . . . . . . . . . .

\section*{HOWARD W. SAMS \& CO.,INC.}

Order from your Sams Distributor today, or mail Sint Dept. RE-8,
4300 W. 62 nd Street, Indianapolis, ind. 46206 Send me the following books
```

 \square\squareICl-1 TRW-2 MIL-3 SPN- 1 CAR-1 \(\square \mathrm{ClC-}\)
    ```
 enclosed. \(\square\) Send FREE Booklist


\author{

}


Eico 430 generalpurpose ascilloscope

THIS 3-INCH SCOPF is TRUI.Y PORTABLE. It weighs but 11 pounds and takes about as much room as 24 issues of RadioElectronics ( \(81 / 2\) inches high, \(53 / 4\) inches wide and \(111 / 4\) inches deep). The front panel is smaller than that of some vtvm's.

To make this size possible. frontpanel controls have been reduced to a minimum for the simplest possible operation and less confusion. It's very diffieult to grab the wrong knob when you're in a hurry. Automatic sync eliminates the sync-gain control.

There is a MuMetal shield around the neck of the 3-inch flat-faced CRT. This reduces the effects of external magnetic fields-the scope's power transformer and others nearby as well as things like motors and thuorescent light ballasts.

The 1,500 -volt power supply gives a sharp. bright trace with no "blooming". Intensity and focus controls are on
the front panel. Astigmatism adjustments can be made without removing the cabinet.

The intensity modulation input has an impedance of 2 megohms shunted by 25 pf.

The preamplifiers and sweep oscillator are powered from a voltage-regulated point on the power supply bleeder. The sweep amplifier tubes use 400 volts B-plus, unregulated.

The vertical amplifier is flat from 2 cycles to 500 kc and down 6 db at 1 mc . The sweep sensitivity is 25 mv per centimeter. Input impedance is 1 megohm shunted by 30 pf , through a switchable \(100: 1\) coarse attenuator into a cathode follower. Putting the "fine" gain control at the cathode-follower output increases the high-frequency response.

Vertical centering will let any part of the trace be centered on the CRT even when the vertical gain is set high enough to make the trace more than three times the CRT diameter. Such an expanded trace give details equivalent to the trace on a 9 -inch CRT.

Expanded traces on the horizontal sweep are only twice the diameter of the CRT face. The horizontal amplifier is flat from 2 cycles to 350 kc with a sensitivity of 250 mv per centimeter

The sweep selector has four overlapping ranges of sawtooth sweep from 10 cycles to 100 kc as well as 60 -cycle sine-wave sweep. The four sawtooth sweep ranges have full retrace blanking with a choice of internal or external synchronization. The external sweep input is also selected by the sweep range switch.

The frequency response of the vertical amplifier is sufficient for most hi-fi. radio and black-and-white TV work. It can be used with a sweep generator for i.f. alignment. Video-signal and syncpulse waveform observations will not be distorted by what may seem to be too low a high-frequency limit ( 500 kc ). The color-burst frequency ( 3.85 mc ) will not

Fig. 1-Compactron type 6 D 10 tri-ple-triode is used in Eico 430 as sawtooth sweep generator, blanking pulse generator and atutomatic sync.

he visible- it is too far out of the amplifier bandpass.

Jacks and a switch make it casy to connect directly to the vertical deflection plates for making percentage-modulation tests on AM transmitters.

For technicians who have never used a scope with alutomatic sync, this unit will be a surprise and a treat. The iuggling of the horizontal sweep vernier and sync-gain controls to get a stationary trace has heen eliminated. All waveforms snap right in as long as the horizontal sweep isnt set too far off frequency.

This pleasure is made possible by a circuit using the 6DIO triple triode (Fig. 1). The three triodes provide the sawtooth sweep. retrace blanking and automatic sweep synchronization. Suitches have been eliminated to simplify the circuitry.

The sawtooth charging capacitors are in the grid of V5-a. Whichever is selected charges through the \(1(0)\) meg sweep vernier control (R37) and R36 across the 400 -volt source.

When the grid of V5-il becomes positive with respect to the cathode. the capacitor discharges through the tube which, at this instant. might just as well be a diode-with the grid acting as an anode (plate). This discharge (the retrace) and the slow-charge waveform are fed to the horizontal amplifier.

The current flow during this discharge causes a voltage drop across R 30 -cufting ofl both V5-a and -h. With V5-a cut off. the voltage at the plate of V5-a rises and makes the grid of \(V 5-\mathrm{h}\) more positive (through R31 and (16). The current flow through R30 and V5-h keeps V5-a cut off and allows the sawtooth charging capacitor to charge.

When the voltage on the grid becomes more positive than its cathode. the capacitor discharges-starting the sweep evcle over again.

When both V5-a and -h are cut off. the voltage at the plate of V5-h rises sharply. The pulse drives the cathode of the CRT more positive (through CI3) in relation to the CRT grid and the electron heam is cut off-the tube is "blanked" during the retrace.

The sync-control triode (V5-c) also controls the hias on V5-h. When V5-c is driven into conduction by a positive synchronization pulse on its grid, the voltage drops across R34 and R31 increase. This makes the grid of V5-b less positive. With the grid of \(V 5-\mathrm{h}\) less positive, the flow through the tube drops and V5-a can conduct sooner. When the capacitor discharges through V5-a the sweep oscillator cycle starts. V5-c controls the point at which the retrace starts.

The Eico model 430 is priced at \(\$ 65.95\) as a kit. and at \(\$ 99.95\) wired.Elmer C. Carlson

test signals arie yery handy but they must he accurate. The crystal oscillator is the casiest way of getting accuracy. Texas Crystals TC-3 test oscillator can provide any three selected frequencies between 200 kc and 3 mc . with crystal accuracy. Many harmonics are also usable, as with any crestal oscillator like this.

Literally small enough to be held in the palm of your hand-and transistorized. of course-the TC-3 uses a standard 9-volt battery. Three small standard erystals are plugged into the row of sockets on the left end and a combination on-ofl switch and crystal selector is in the center. A 250.0\()(0)\)-ohm pot is used as an attenuator, and rf output varies from 100 mv at the high end of the range, around 3 mc , to 500 mv at the low end. Rf output is taken from a standard phono type coaxial jack: a 50-pf blocking capacitor in series with this cable is recommended. just in case you happen to hit a high-voltage point in the circuit under test!

This unit may be ordered with any three crystals in its range. Each is callibrated at the factory. and the actual frequency is entered on the instruction sheet. I chose a I-me crystal. which was given as 1.000 .004 kc (well within the . OO2 0 , tolerance claimed by the maker). Beating the loth harmonic of this against WWV on 10 mc . I could hear an audio beat note which was very close to 40 cycles. without making a precision measurement. This aceuracy is ample for all service shop usage. and the stability is excellent. I left it hooked up for about 15 minutes on zero-beat with WWV. and the drift wasn't perceptible to the "naked ear."

An instrument like this could be very handy in the shop, especially for remote use: auto radio. two-way radio and such. We aligned a car radio. in the car, as a test. on 260 kc . checked the low i.f. of a two-way FM receiver at 455 kc . in the car. with the greatest of ease. CB radio work could he made easy by choosing the special 2708-kc "Frequency Spotter" crystal offered: crystals for

\section*{Now: 10-pin miniatures}

Four new standard-size miniature tuhes with \(1(1)\) pin ("decal") bases have been announced by Amperex. The tubes originated in Holland with the Philips Co.s Electron I uhe Div.

The four tubes are the 6X9. 6U9. 6W9 and 6V9.

Why the Io-pin bottoms? The extra connection is used to get greater flexibility of internal element design and

connection. For example. in the 6X9 ECF200, a triode-pentode, the pentode's suppressor is connected, together with an internal inter-section shield. to a separate base pin. and not to the cathode as in earlier designs. Thus it and the shield can be grounded, to give less interaction between sections. The same structure applies to the 6U9 E(FF2)

The EFL200) (6Wy) is a double pentode. The " \(F\) " (voltage-amplifier) section can be used as a sound-i.f. ampli(continued on pase 72)
any \(C B\) channel fon the appropriate harmonic. of course) could also be used, as could the i.f. crystals. The signal is not modulated. hut you can get indication of output from the set in several ways: in FM receivers by using the built-in gricl-current metering system. in CB sets with a vivm on the ave line. etc.

Battery life should be good, if you remember to turn the oscillator off each time you're through with it! By the way. this would be a dandy instrument for setting up antenna trimmers on CB rigs, after installing them in the car. You can put a small radiator on a phono plug. hook it to the TC-3 and then set the thing on the fender, so that it radiates a weak signal into the antenna. This will allow peaking the trimmer very precisely, since the signal strength can be adjusted by moving the oscillator farther away or nearer.

Price of the Texas Crystals TC-3 is \(\$ 29.95\) complete with three crystals.Jack Darr

- Lightweight, compact . . Self.contained
with Leather Case and Shoulder Strap
- External Push-10.Talk Dynamic Microphone
- Powerful 13-Transistor 5. Diode Circuit
- Modulation/Battery Strength Mete
- Push-Button Operation
- Powered by Flashlight Batteries or

External 12 VOC Supply
- Complete with 2-Pair Transmit/Receiver

Crystals
Imported

- zee: Lafayette's 1964 Catalog No. 640 I 422 Giant-Size Pages Everything in Electronics, Hi.Fi, | C.B., Test Equipment, Amateur Gear, TV and Radio i Parts, and much more.


\section*{ITP ONSE COOHTS 1/200 OP IM MORJ PER SOLDRE SORSN} TO KNOMTOU ARE DSTNE STHE
 CORED SOLDRE


Sold only by Radio Parts Distributors
*Based on cost comparison in current catalogs. MULTICORE SALES CORP., PORT WASHINGTON, N Y.
fier, age amplifier or sync separator. The "L" (power) section is designed as a video output stage. and can provide 100 volts of composite video signal with a plate load of \(2,0(0)\) ohms.

The remaining tube, the ECH200/ 6 V 9 , is a triode-heptode for use as sync amplifier and sync separator. Both seetions are completely independent (except for the heater) and shiclded from

each other-a result of using the 10 -pin hase.

The 10 -pin base has the same pincircle diameter as the familiar 9-pin ( noval) miniature. Roon for the extra pin comes from reducing the spacing between pins. According to a Philips bulletin. increase in interelectrode capacitance as a result of the closer spacing is negligible.

Ultimate objective of the new design is to make possible more compact TV sets by combining functions that till now had to be handled by separate tubes.

\section*{"Fast Fax" tube data file}

A unique card file of condensed characteristics of the latest receiving tube types has been introduced by Raytheon Co.'s Industrial Components Division. The file is designed for ready reference by technicians. service dealers and tube distributors.

Tube data and basing diagram are on the same side of the card. so that all pertinent information can be seen without turning the card over. Tabhed index separator cards make it easy to locate tube cards. The set comes complete with


100 most-popular tube types and all new ones registered with the EIA in 1962, 1963 and the early part of 1964. It will be kept current with supplementary cards mailed automatically to subscribers. The first supplement, due in

September, will include all new types used in 1965 radio and TV sets.

Each card slides onto hinder rods in the file holder without tools or dismantling. Cards can be removed, but will not come out accidentally.

Also included is an inventory control form on the hack of cach card. and an interchangeability guide. Suggested list price for the file, with one-year supplement service, is \(\$ 3.95\). It is heing offered through franchised Raytheon distributors.

\section*{Triac}

A special silicon power semi-conductor-a gate-controlled ac switch with three leads-has been announced by General Electric. It works more or less like two silicon controlled rectifiers connected in parallel hack to back.

This characteristic permits it to conduct and control full-wave ac rather than pulsating de as a single SCR does.

The Triac requires less than 3 volts at less than 50 mat to trigger it into conduction. The gating (or triggering) signal may be dc. ac or short pulses of either polarity.

G-E expects the Triac's widest application in explosion-proof static contactors for on-off switching of motors and lighting: motor statters and controllers: temperature regulators: welding controls. etc.

The device is packaged in conventional stud-mount or press-fit housings. A photo of it appeared on page 43 of the April \(196+\) Radio-Electronics.

\section*{22-throw diode coax switch}

An all-solid-state diode coaxial switch with 22 positions has been announced by ARRA (Antenna and RaJome Rescarch Associates). The units are usable up to 2 gc . have a maximum insertion loss of 3.5 db and a minimum

isolation of 30 th . and can handle up to 1 watt. Switching time is 100 nsec .

The switches are used for multichannel antenna receiver switching applications. antenna lobing. and beam shaping in phased and steerable antenna arrays. Similar units, with insertion losses of only about 1 db , are available for the \(100-\) to \(1,000-\mathrm{mc}\) range.

The price dependis on the customer's requirements, but be sure you really need one before you order. The price will range from \(\$ 900\) to \(\$ 1,500\). END


INTERMITTENT IN BROWN MODEL 152 ELECTRONIC INDUSTRIAL RECORDER

When you troubleshoot one of these recorders for intermittent. erratic operation (after you determine that the electronic amplifier and the meastaring circuit components are not at fault). check the wiring harness located at the top left side of the instrument case. I.oosen the chassis lateh and swing the chassis out of the case. The harness, a laced cable. has a flexing point between the moving chassis and the clamp on the case. The wires in the harness eventually break because of this flexing. causing a hard-to-find intermittent. The harness must be replaced.- \(i\). (i. Lewis

\section*{POOR FOCUS IN HEATH 0.8 SCOPE}

The user of this oscilloscope found he couldnit focus the trace until the focus pot was all the way against one end stop. Brightness control was satisfactory.

The trouble was traced to the 1 -megohm resistor at the

bottom of the string (see schematic). Its value had risen to over 2 megohms. throwing the range of voltage adjustment beyond the value needed by the CRT. A new resistor restored proper focus control-Donald R. Hicke

\section*{REMEDY FOR INSUFFICIENT WIDTH}

In sets with insullicient width (and no width control). after everything is known to be working correctly, try increasing the value of the horizontal output-tube sereen resistor by 50 to 60

This reduces high voltage. To restore it to its former level. you will usually have to decrease the capacitor in the damper circuit by about \(25 \%\) to \(30 \%\). Use a ceramic rated alt 6 kv .

The changes can increase width by 2 inches or somelimes more.-li. L. Desshamhanh

\section*{INSUFFICIENT HEIGHT IN MOTOROLA TS-581, -584}

A loss of vertical size in these chassis may be the result of an increase in the resistance of the 3.3 -megohm resistor in series with the vertical size control. Sometimes the resistor may open up completely. killing the vertical sweep altogether.

This resistor is part of the vertical size and noise-gate control assembly and so can't be replaced separately. But

BECOME A RADIO TECHNICIAN for only 526.95
BUILD2ORADIO
CIRCUITS AT HOME
 All Guaranteed to Work!


\section*{NOW INCLUDES}
\(\star 12\) receivers
\(\star 3\) TRANSMITTERS

* SQ. WAVE GENERATOR
- AMPLIFIER
- SIGNAL TRACER
- SIGNAL INJECTOR
- CODE OSCILLATOR


WHAT THE "EDU-KIT" OFFERS YOU
\begin{tabular}{|c|}
\hline \multirow[t]{42}{*}{\begin{tabular}{l}
 license requirements. matics, how to mount and lay out radia parts, how to wire and solder, how to operate mundrede of dollare for a padin course. You wil receive a basce education in radio,
worth many times the small price you pay, only \(\$ 26.95\) complete. \\
THE KIT FOR EVERYONE \\
 and old in all parts of the world, by many Radio Schools and clubs in this eountry and Vetrrans throughout the world \\
meluded. Every step 18 carchully explained. You no instructor. All inseructiont are \\
PROGRESSIVE TEACHING METHOD
\end{tabular}} \\
\hline \\
\hline
\end{tabular}



\section*{MEDICAL ELECTRONICS}

Continued from page 25
so strong that it will transilluminate the thickest part of the hody. Thus the physician by accurate focusing can actually see in three dimensions your heart as it beats, probably in full color. He can also see the heart's interior and watch the working of the heart valves. He will watch the actual working of many of your glands, either with his own cyes. by photography, or be motion pictures.
"When that time comes, and it is coming, we will at long last know what makes us really tick."

This was written long before the laser was invented. Now we have a most powerful new tool, which the present writer believes will in the not too distant future be used to transilluminate the body. Using ordinary X-ray techniques but substituting a laser or related means, it should be possible to use a super-power beam or ray of coherent laser light that is sufficiently powerful to pierce any part of the human body. Then by focusing it accurately on any organ it can be transilluminated-probably in color-in its entirety. The new technique simply depends on the correct amount of applied power and intensity to achieve penetration of an opaqueor, let us say, a semi-translucent-subject, the body. The intensity of pulsed laser light is stupendous, many thousands of times greater than even sunlight.

Will the patient not be burned? No, not with the correct filters and, more important, the correct time exposure of the body. Future exposures-similar to present-day X-rays-will be done in very small fractions of a second.
\(-H . G\).

you can avoid having to replace the entire package by rewiring the circuit slightly. This will also prevent recurrence of the trouble. Fig. 1 shows the original circuit, and Fig. 2 the rewired version. You will have to ground the horizontal module at any convenient point.-Motorola Tech-Review

\section*{COMPUTER TECHNICIANS}

\author{
Immediate Stateside \& Overseas Openings
}

Must have a minimum of 2 years' experience in the maintenance of military or commercial computers or data processing systems.

Excellent benefits including stock savings plan.
Qualified candidates please send complete resume to Mr. Don Kirkland, Dept. 806.

\section*{PHILCO TECHREP DIV.}

A Subsidiary of Ford Motor Company
P. O. Box 4730

Philadelphia, Pa. 19134
An Equal Opportunity Employer

\section*{PULL-TYPE SPEAKER SWITCHES ON GERMAN RECORDERS}

The Grundig TK40 and TK42, and the Uher SR 111 use pull type speaker cutouts. Lifting the volume knob disconnects the internal speaker when the recorder is used to drive other systems.

If you have to remove the volume knob. leave plenty of clearance between the knob and the surface below when you replace it. Putting the knob too far down on the shaft may make it impossible to turn on the internal speaker.

When you return one of these machines to the customer, make sure the switch is in the on position. Nontechnical pcople who have never used the switch may not be able to operate the machine and will bring it back to you.-S. P. Dow

\section*{BATTERY POLARITY WARNING REDUCES SERVICE CALLS}

In my area (Vancouver Island, British Columbia) there are many remote logging camps where people rely heavily on portable radiotelephones. Since these are mainly nontechni-

cal people. reversed battery connections often mean a long airplane trip to a service technician. In transistor or hybrid equipment, wrong polarity can ruin a set.

To combat this. I include the circuit shown here in al! installations. If connections are reversed, the bulb lights, warning the operator before he turns the set on - \(-A\). A. Lamont

\section*{FAULTY TUNER CAUSES INTERMITTENT PICTURE}

In Motorola TS-539's, the three wafer strips in the tuner plug in to the tuner, and the plugs and electrical connections on each wafer are brudded instead of soldered.

\section*{Coming Next Month in Radio-Hlectronics}

\section*{ADD A MEChanical FIlter}

Would you like to tune out stations on 1460 and 1470 kc and tune in a European on 1466? That's what our reviewer did when testing this little device. Using a Collins magnetostriction filter, and a single transistor, this unit plugs into an i.f. tube socket, is a great help in separating crowded stations on the broadcast band or short waves. Next month-how you can do it.

\section*{FLEXIBLE HOME INTERCOM}

A system that permits any station to call and speak to any other, without going through a "master" station ; to address all other stations simultaneously, or to switch to a "music mode" and listen to background music. In addition any station can switch so it cannot be called, and no station can be monitored arbitrarily by another. Only one amplifier (transistor-type) is used for the whole system.

\section*{MAKE MONEY WITH ELECTRONICS AFLOAT}

The vast number of pleasure boats and the increasing amount of electronic gear they carry means there is a lot of work around for the service technician who goes after it. Marine equipment is simple and straightforward (at least compared to TV!) but the work calls for its own approaches and techniques.

\section*{RELIABLE TRANSISTOR IGNITION SYSTEM}

A three-transistor circuit that makes it possible to construct a transistor ignition system without buying a special coil. Also makes Zener diodes unnecessary. Our checker reports "Acceleration and engine smoothness seemed improred, especially on long upgrades. Gas economy up...."

You'll find these and man! other articles, features and regular departments in next montli's RADIO-ELECTRONICS.

SEPT. ISSUE (on sale Auğ. 18)


YOU DON'T NEED A BENCH FULL OF EQUIPMENT TO TEST TRANSISTOR RADIOS! All the facilities you need to check the transistors themselves - and the radios or other circuits in which they are used - have been ingeniously engineered into the compact, 6 -inch high case of the Model 212. It's the transistor radio troubleshooter with all the features found only in more expensive units. Find defective transistors and circuit troubles speedily with a single, streamlined instrument instead of an elaborate hook-up.
Features:
Checks all transistor types - high or low power. Checks DC current gain (beta) to 200 in 3 ranges. Checks leakage. Uni. versal test socket accepts different base configurations. Identifies unknown tran. sistors as NPN or PNP.


After a short time, the brads loosen or oxidize, and the result is intermittent or very poor reception. Each wafer section must be removed very carefully and all pins and brad connections soldered with a small gun or soldering pencil. To remove the wafer strips, the tuner must first be removed and the following steps completed:
(1) Remove the seven mounting screws holding the tuner to chassis.
(2) Drop the front end of tuner downward so that it protrudes toward the bottom of chassis.
(3) On atutomatic-tuning models (motor on rear of (uner), remove the motor mounting screws and remove motor from tuner.
(t) Remove the screw holding the automatic channelselector disc to the rear of the tuner shaft. Remove the disc.
(5) Remove the tuner cover plate to get at the wafer sections.
(6) Remove Phillips screw holding the tuning shaft to detent mechanism.
(7) Remove shaft by pulling straight out from the front of the tuner.
Each wafer can be removed by pulling it firmly but carefully out from the bottom of the tuner. After soldering each brad connection. replace the wafer carefully and see that each wafer pin is properly in place. Use a minimum of solder around pins.-John B. Ledbetter

\section*{BURNED VERTICAL OUTPUT RESISTOR}

\section*{IN PACKARD-BELL 99 CHASSIS}

Whenever one of these sets loses boost voltage, the vertical output tube's plate dropping resistor burns up. The reason is that the vertical oscillator's plate supply is from the boost. while the vertical output stage draws its current from B-plus. When boost disappears. the oscillator stops, removing drive from the output stage grid. The output stage's plate current soars, burning the resistor.-Joseph K. Nicholson END


Transmits voice or signal with power and fidelity to any standard FM tuner or radio. Perfect for use where mike cords are inconvenient. For broadcasting, remote tape recording, communicating or hundreds of other applications in schools, churches, theatres, plants, stores, homes and sport88.108 mc band. 3995 IMP IT. 221 Tr \(\begin{array}{ll}\text { IMP II/M-222 } & \text { Complete with built-in } \\ & \text { pinhead microphone }\end{array} \mathbf{9 5 5}\)
pin-head microphone
Distributor or write Dept. R-8
Made in
U.S.A.
K Kinen See Distributor or write Dept. R-8
2040 West Washington Boulevard
Chicago, III. 60612 Area 312•666-0066

 milliwat max. current fab). Meet mil. specs. 1000 KC to 1600 KC (Fund. Freq.) 1601 KC to 2000 KC (Fund. Freq.) on Request 2001 KC to 2500 KC (Fund. Freq.) … \(\$ 5.00 \mathrm{ea}\) 2501 KC to 5000 KC (Fund. Freq.) ....... 3.50 ea. 5001 KC to 7000 KC (Fund. Freq.) ...... 3.90 ea. 7001 KC to \(10,000 \mathrm{KC}\) (Fund. Freq.) 3.25 ea \(10,001 \mathrm{KC}\) to 15.000 KC (Fund. Freq.) 3.75 ea 15 MC to \(\mathbf{2 0 M C}\) (Fund. Freq.) .............. 5.00 ea. OVERTONE CRYSTALS
15MC to 30MC Third Overtone ........ \(\$ 3.85\) ea.
30 MC to 40 MC Third Overtone ........... 4.10 ea. 40 MC to 65 MC Third or Fifth Overtone 4.50 ea 65MC to 100 MC Fifth Overtone ........ 6.00 ea. DRAKE 2-B Receiver Crystals ............. \(\$ 4.00\)
(All Channels-Order by Freq.)
OVEN-TYPE CRYSTALS
For Motorola, GE, Gonset, Bendix, etc. Add \(\$ 2.00\) per crystal to above prices SUB-MINIATURE PRICES slightly higher H ORDER FROM CLOSER PLANT

DEPT.RE
000 Crystal Drive
FORT MYERS, FLORDA
Phone 813 WE 6-2109
TWX 813-334-2830
4117 W. Jefferson Blvd.
LOS ANGELES, CALIF.
Phone 213-731-225





\section*{INDOOR ANTENNA}

VU-82, model \(4(0)(0)\), for uhf/whf/FM. 2 antemas in one, each with own tramsimission line. Uhf diplexer circait gives midirectional pattern, can be automatically reversed \(180^{\circ}\) by switching, lets, both uhf dipoles operate simultareously, with twice gain of single antennal. Electronic tumer matches antema's 300 -ohn impedance to set and adiests length of vif elements to wavelength of chamel. \(96-\mathrm{in}\). clements ioined to 10 -in, walnut-grained column.Channel Master Corp., Ellernville, N. Y.


LOG-PERIODIC TV ANTENNA FOR UHF LPV-Z120): Zig-u-Log beam widths no less than \(20^{\circ}\) for casy orientations, uniform gain and impedance across wide bandwidth. Maximum usable gain for weak signal areas and minimal side lobes for ghost rejection. Input impedance matches 300 -ohm transmission line. Vswr less than 1.8:1 across uhf channels. E- and II-
plane beam widths have 1:2 ratio. Cain \(16.5 \pm\) 管 (d) over half-wavelength dipole. Aluminum elements, stainless steel takeoffs , -IFI) Electronics Corp., 15th Ave, at (62ucl St., Brooklyn 19, N. Y.


\section*{ANTENNA ROTOR SYSTEM}

TR-2C, features new control box with heavy-duty CD rotitor. Finger-touch control. By depressiug lever to left or right, antemia is rotated and position monitored by series of compass lights. Black leatherette and brushed aluminum. \(6 \times 4 \times 2\) in. -Cornell-Dubilier Electronies Div., 50 Paris St., Newark 1, N. J.


\section*{CORDWOOD-SIZE CERAMIC CAPACITOR}

MC-70. Ratings from 10 to 20,000 picofarads. For automatic insertion in printed circuits. 0.260 -in. maximum length by (0.100)-in. maximum diameter, with axial leads at least \(1 \not 2 \mathrm{in}\). long.-Aerovox Corp., Distributor Div., New Bedford, Mass.


TUNNEL.DIODE CONVERTER FOR UHF
Model BTD-At Ulfracerter cordless unit, uses single flashlight battery as power supply. Converts all uhf chamels to vhf channel 5 or 6.-Blonder-Tongue Labs, Inc., 9 Alling St., Newark, N. J. 07102


\section*{BOOSTER AMPLIFIERS}
\(3.5 B A\) and \(7.5 B A, 3.5\) and 7.5 watts, respectively, for additional power as shares to main P'A system. Used with Bell BE-MA microphone miver to form eomplete lit system. Signal-to-noise ratio over 75 dl , frecuency response 30 to \(1.5,000\) (eveles. Plug-in relay for remote control of ac power or standhy operation. Styled like BE series; bridening input standard but converts to 600 ohms balanced line with plus-in transformer input.-TRW Columbus Div., Thompson Ramo Wooldridge, Inc., 6:32.5 Ituntle: Rd., Columbus 24, Olio.


\section*{HAZARD SENSOR}

Has circuit breaker and fast-acting fault detector for \(50 / 60 \mathrm{cycle}\) ace. Protects equipment operators and others from clectrical shock, instantancously shats down equipmont when faults develop, detects danger from hot lines and opens source before shock hazard develops. Can be set on ac or pulsating de.-Shock-Proof Electronics, luc., 1601 (iirard Trust Bldg., Philadelphia, la. 19102


\section*{ELECTRONIC NOTEBOOK}

Transistorized, records up to 30 minutes on 1 tape. Picks up ordinary conversation
2.) ft away. Rewinds in less than 3 min-
 lowered by standard 1.5 -volt penlight batteries. Remote-control microplione, caphone \(\&\) batteries, tape, extra reed, leather carrying casce, shoulder strap). Telephome pickinp for recording phome conversations asabable-Mahn Co.. Dept. R-E, :3408 Votor tre., Ios Angeles, Calif. \(900: 34\)


\section*{TV/FM DISTRIBUTION AMPLIFIER}

Model LIID-40AR. Feeds low and high Whf TV and full Fal signals into as many as four distribution lines with output level of 50 d a above 1 mo at channel 13. Fed from directionad coupler or from end of distribulion line; sorves as either brideing or distribution line extender. Feeds \(1^{\frac{1}{2}}\) miles of distribtution lines.-Entron, Inc., 2141 Industrial Parkway, Silven Spring, Mcl.


\section*{ORGAN KIT}

Cinema, smallest Artisan theater organ30 in . deep, 46 in . high. Meets A (iO) specs with 3 full 61 -note manuals, comeate 32note clatvicr. Intermantal couplers, twin expression pedals, indepenclent vibratos, independent oscillators for each key, built-in music light and preset combinat tion pistons. Stop list of authentic Usater soices. Chimes, orchestra bels, vibra harp and band box optional. Variety of finivhes-Artisan Organs, 2476 N, Lake Are., Altadena, Calif.


\section*{TUNER/AMPLIFIER}

S-8000IV. 80 watts. Powered center speaker channel for center or thircl-channel spaker system or extending mono


Recital Uodel the most versurise shober organ available today. Its 32 voices (plas amazing "L ibrary of Stops") 6 couplers and 5 pitch registers delight professional musicians... make learning easy for beginners. Comparable to ready-built organs selling from \(\$ 5000\) to \(\$ 6000\).

The pride and satisfaction of building one of these most pipe-like of electronic organs can now be yours...starting for as low as \(\$ 550\). The Schober Spinet, only \(391 / 4\) inches wide, fits into the smallest living room. The new, alltransistor Schober Consolette II is the aristocrat of "home-size" organs ... with two full 61-note manuals, 17 pedals, 22 stops and coupler, 3 pitch registers and authentic theatre voicing.
AND YOU SAVE \(50 \%\) OR MORE BECAUSE YOU'RE BUYING dIRECTLY FROM THE MANUFACTURER
and paying only for the parts, not costly labor.
It's easy to assemble a Schober Organ. No special skills or experience needed. No technical or musical knowledge either. Everything you need is furnished, including the know-how. You supply only simple hand tools and the time.

You can buy the organ section by section... so you needn't spend the whole amount at once.

You can begin playing in an hour, even if you've never played before-with the ingenious Pointer System, available from Schober.
Thousands of men and women-teenagers, too -have already assembled Schober Orgins. We're proud to say that many who could afford to buy any organ have chosen Schober because they preferred it musically.

Send for our free Schober Booklet, describing in detail the exciting Schober Organs and opional accessories; it includes a free 7 -inch "sampler" record so you can hear before you buy.

\section*{тti Schoter Oygan conpanarow \\ 43 West 61st Street, New York, N.Y. 10023}

Also available in Canada. Australia. Hong Kong. Mexico. Puerto Rico, and the United Kingdon


\section*{GLECTRONICS}

\section*{Engineering-Technicians}


The Nation's increased demand for Engineers,
Electronic Technicians, Radio TV Technicians is at an all time high. Heald Graduates are in demand for Preferred High Paying Salaries. Train now for a luerative satisfying liretime career

Bachelor of Science Degree, 30 Months Save Two Years' Time
\(\square\) Radio-Television Plus Color Technician (12 Months) \(\square\) Electronics Engineering Technology ( 15 Months) \(\square\) Electronics Ençineering (E.S. Dogree)

Electrical Engineering (B.S. Degree) \(\square\) Mechanical Engineeririg (B.S. Degree)
\(\square\) Civil Engincering (B.S. Degree)
- Architecture (B.S. Degree) (36 Monthis)
Approved for Veferans DAY AND EVENING CLASSES

\section*{HEALD'S}

ENGINEERING COLLEGE
Est. 1863 - 101 Years Van Ness at Post, RE
San Francisco, Calif.

When you move, send us your OLD address (as it appears on your latest copy of Radio-Electronics) as well as your NEW address. If possible, send us the actual address label which is pasted on the front cover. Include your ZIP code if you know it

spakers in other rooms. Front-panel stereo headphone jack and speaker disabling switch. \(1.8 \mu \mathrm{~s}\) (IHE) FM sensitivity: 2.4-dh capture effect. F.I interchannel hush. FXI distortion \(1 / 3 \%\) at \(100 \%\) modulation. 8-inch tuning dial with frequency markings every 200 kc .-Sherwood Electronic Laboratories, Inc., 4300 N. California Ave., Chicago, Ill. G0618


\section*{MINIATURIZED POWER SUPPLY}

Leetrocell replaces dry battery in vtim olmmeter circuit. Same size and shape a 1\%-rolt battery it replaces.-Lectrotech, Inc., \(1733^{-}\)W. Devon Ave., Chicago, Ill. 60626


\section*{REPLACEMENT TAPE HEADS}
(for Sony tape decks and recorders), Laminated professional type, match Sony models 101, 262-I) and 262-SL. Packed in kit with mounting larchare, replacememt pressure-pad material and instruc-tions.-Nortronies, 1801 Nicollet Ave., Mimeapolis, Minn. 55403


TRANSISTOR FM STEREO TUNER
Model 312. Silent :utomatic stereo switching not affected by momentay changes in signal strength; usable sensitivity (IHF) \(2.2 \mu \mathrm{~V}\) (minimum); signal-tonoise ratio 65 db , distortion under \(0.8 \%\); drift less than 0.02\%. Frequency response (sterco) \(\pm 1 \mathrm{dt}, 30-15,000\) cycles. Capture ratio 4 db ; selectivity 35 db ; crossmodulation rejection 80 db . AM suppression 55 db ; accuracy of calibration \(0.5 \%\); separation 35 (l); 4 all-silicon i.f.'s. \(15 /{ }^{2}\) \(\times 5\). \(\times 13\) in - H. II. Scott, Ine., Dept. P, 111 Powdermill Rd., Maynard, Mass. evib

\footnotetext{
All specifications from mamufacturers' data.
}

\section*{book'ets}

Jew Literature

\section*{charts \\ catalogs}

CRISTALS AND EOUIPNENT CATALOG 24 pates ? coors. photos charmand cureer 1 in commercial crystals. crybtal onens, amateur and ( \(B\) crystats, atcessories. oscillators. frequencyalignment equipment. transistor subassemblies tranmmilers oxillators. converters and 3 pager of technical data for 1964.-International Crystal Mfy. Co. Inc., is No. Lec, Ohtahoma City, Ohla.

REAAY CATADOG. 20 pages. 2 colors. describes line of standard industrial retass. Photos and elharts, seetioned into hegh-performance, power, special, general and telephone typer. lists coil voltages. resistances, time valacs, contact ratings, terminations, dimemsons for each relay. - Potter \(\mathcal{E}\) Brumfield, Div, of American Machine \& Foundry Co., Princelon, Ind.

TRANSISTORS AND DIODES WALL CHAR'T, CH-Ith.50.M. \(19 \times 25 \mathrm{in}, 2\) colots. I.ists 40) hasic semsonductor replacements for ElA types, private-mantiaturer and foreign topen-L.. Rivman. Semitronies Corp.، 265 Canal St.. New York, N.Y', 10613

GIOSSARI of 99 tape recording terms, 4 pages of well-spelled-out definitions of some of most common terms--3N Co., 2501 Hudson Road, St. Panl 19. Minn.

PERNANENT MAGNETS. Bullesin 21 dc scribes bars, multiple bars, rods. U-shapes, cylinders, arched and channel horseshoes and rings. Photos, charts. and dimenstonal drawines. 12 pages 2 colors.-Indiana General Corp.. Nagnet Div., Valparaiso, ind
 taming \& ypical circuits for \(n-1 p-n\) germanium allos transistors, including chatacteristic curnes in industrial and entertainntent applications.-Sylvania Electric IProduct Inc.. SMT-3929, 1100 Main St., Buffalo. N. Y. 142019

SBEREO COMPONENTS CATALOG CL 643. 16 pagen. describes full line of tuners, amplidiers, receivers. tape dechs, tape recorders uith
specs and photos.-Bell Sonnd. IRW Colmmbus Div.. 6. 325 Huntley Road, Columbus, Ohio

SIFRVICE COMIPONENTS CATALOG for 1964. 20 patges. photos, graplis and ciagrams of line of wirewound and carbon potentiometers. fixed value or adjustable wirenound renistor. switches. -Distribator Div., Clarostat Dfz, Co. Inc., Dover. Nil.

INSTITUTE PAMPHIETE, "opportumitics in Electromes For You." 28 -page booklet with photos suggest areas open to electronics tuchniciansCleveland Insitute of Electronics, 1776 E .17 St ., Cleveland. Ohio
C.ITAIOG of Teflon terminals including standolls. feedthroughs. "cloverleaf" receptates. bushings. testonoint jacks. taper pin receptacles. proben and plags. Iransistor units. Ctoss-indexed 40 pates with dimensional drawings. photos, spees. -Sealectro Corp., 225 Hoyt St. Mamaroneck, N.Y

EL, APSED-TINE INDIC.ITORS, m.niaturi/ed series gsc and others described in 8-pare booklet with photos. diagrams and specs.-Elgin National Watch Co.. Communieations Jiv.. Industrial Group. 366 Bluff City Blud.. Elgin, 111. 60120

OPTOELECIRONIC CONIROL DEVICES folder deseribes 19 models of 4 -termmal units operating via controlled light falling on plocoresistive element. Photos, diagrans, chart.-Riclard Finger, Raytheon Co.. Industrial Components Div., 55 Chapel St.. Newton. Mass. 02158

STEREO EQUIPMENT-small folder describes Allegra series of sterco amplifiers. luners and receivers. Photos and specs.-Grommen. Div. of Precision Electronics Inc., 9101 King St., Frank lin Park, III.

DC I'OWER SUPPIX DESIGNS. Form 1039, clectrical data thects to buite 36 miniclure nower supplies including transformers. rectifiers and fil-
ters. De voltages from lo to so. power rating from 2 si mw to 24 watts.-J. S. Conklin, Magnetic Cir cuit Elements linc., 3720 Park llace, Nontrose Calif.

COANIAL CABLE Catalos CC-5. 16 pages describes construction and characteristics of 58 co avial cables made with polyedhylne and Teflon insulation. Phonos and charts.-Alpha Wire Corp. ['S. Wire © Cable Dis., 180 Varick St., New York. Ni.Y. 10014

CAPSUI.E THERMISTOR COUTSe No, 6 "Thermistor Probe Assembly Design" discusse housing configurattons for a thermistor probe in sombly in a given application. Single loose-leat page.-Sales Enginecring Dept. Fenwal Electronice Inc., 63 Fountain St. Iramingham, Mass.

RECTIFIER L.EAFI.ETT. 4 pages outlining line of copper oxide instrument rectifiers with color codes specs, dimensions and internal circuits. Conant labs, Box 3997, Rethany Sta., Lincolas

BRUSHIUESS GENERATORS Bulletin Cil. 7 2/i7. 16 pages punched for ring binder dencribe components of set-brushless dencrator brusliless exciter and SCR voltage regulator-no brushe sip rings or commutators. Characteristics, photos charts and circunt dagrams of \(S\) C \(R\) voltage regula tor. For use where continuous or standi-hy pouer required; can be direct-connected to gas or stean turbines or diesel engines.-Ceneral Electric Co. Attr: Gregory Ellis, Schenectady 5, N.Y

SWEEP and SIGNAI (iENERATORS Cam \(\log\) No. 6f-A. 36 3-color pages contain general treat ment of sweep generator operation, sweep measure ment techniques. Spec. diagrams. oscilloscope pat terns on 30 models. Describes accessories such as turret and toggle switch attenuators, coaxial switch es, detectors, oscillators, cable sets. Section on crystal harmonic -inere-frequency variable and sideband markers.-. Telonic Industries, Inc. 60 N First Ase.. Beech Grove, Ind.

HEAT-SHIRINKABIE TLBING. Leaftet in full color with photos and sample, describes Formtite lubing for insulating lerminals and pigtails iacketing wires to form cables, providing idendify

\section*{ALL NEW SENCORE component substitutor}


All your favorite Sencore Substitution Time-Savers in One Compact Unit
A complete range of carbon resistors, wire wound power resistors, capacitors, electrolytics, and universal selenium and silicon rectifier:

Imasine all of these hard to locate parts at your finger tipe for on the spot substitution. Say goodhye to messy (rumpled parts. (unnecessary unsoldering and soldering of components for testing purposes only: Save valuable sorveing time and be sure, by substituting.
NEW . . each section operates independently with a value dose enough for evers substitution need. ('omponents in each section are isolated from chassis and from the other sections. For example. a complete power supply can be constructed using the RClol Compoments only.

N1:WV . . dual electrolytios prowided. A new circuit emables sou to substitute up to \(2 \boldsymbol{z}\) single electrolstic values or 9 duals. Fexclusive stare protector provides protection on both singles and duals for both you and the circuit.
You save epace and money. Fquivalent Sencore sul) stitution pieces purchased indisidually (H:36, PRIIL,

RC 121 (all hand wired, all American made) only 3995
RC121K (Kit) . . . . . . . . . . . . . . . . . . . . . . . . . . 27.95
S E NCORE
ADDISON 2, ILLINOIS

\title{
Make This Your Luckiest Day!
}


Join the Gernsback Electronics Book Club today, and get this outstanding practical two-volume work

\section*{only \\ 9 \\ 9c}

A \(\$ 9.90\) Value ... Originally a \(\$ 25\) Training Course!
You agree to buy only four additional books during the next 12 months at low Club prices.
How to Fix Transistor Radios and Printed Circuits! by Leonard C. Lane was originally prepared as a complete course in servicing transistor radios. This two volume version treats every aspect of transistors, much of it new, original, unavailable anywhere else in book form. Hundreds of illustrations aid understanding. Completely covers semiconductor fundamentals, how transistors work, transistor types, amplifiers, RF and IF stages,. printed circuits, specific servicing methods and techniques, and many, many more subjects.


Here is a fabulous offer to introduce you to Gernsback Library's famous Electronics Book Club, specifically designed to help you increase your knowledge and earning power.

\section*{WHY YOU SHOULD JOIN}

Whatever your interest in electronics - radio and TV servicing, audio and hi-fi, industrial or defense electronics, electronics as a hobby - you'll find that the Electronics Book Club will help you get the job you want, keep it, improve it, or make your leisure hours more enjoyable. By broadening your knowledge and skills, you'll build your earning power and electronics enjoyment as well.

\section*{WHAT KIND OF BOOKS ARE OFFERED?}

From Gernsback Library and other leading publishers come the country's most respected books in the field of electronics. All are deluxe, hard-covered, attractive looking books of permanent value - books you'll want 10 own and keep in your personal, professional library.

\section*{HOW THE CLUB WORKS}

Every two months, the Electronics Book Club will send you, ON APPROVAL, a significant new book on an important phase of elec-

\section*{GERNSBACK LIBRARY, INC.}

154 West 14th Street, New York, N. Y. 10011
Please send me the two-volume set HOW TO FIX TRANSISTOR RADIOS AND PRINTED CIRCUITS for only 99c (plus a few cents postage) and enroll me as a member of the Electronics Book Club. I understand that I need accept only as few as four Electronics Book Club selections during the next 12 months, and I may cancel my membership any time after that.

Name
Address \(\qquad\) Zip
City We pay postage if you send your remittance with this coupon. You have the same return privilege.
tronics. Examine the book for up to 10 days. If you like it, keep it and send your check for the low club discount price - up to \(27 \%\) off regular prices! If you are not completely satisfied, simply send it back and you owe nothing. You risk no money.

\section*{HOW TO JOIN}

Simply fill out and mail the handy coupon today. You will be sent your two-volume set of "How to Fix Transistor Radios and Printed Circuits', worth \(\$ 9.90\). We will bill you 99c (plus a few cents postage). If you are not salisfied with the books, send them back within 10 days and membership is cancelled. Remember, your only obligation is to buy four additional books from the many offered during the next 12 months. The selections listed are typical of those you'll be ahle to buy at the special reduced club member's price.

\section*{TYPICAL CLUB SELECTIONS:}

\section*{Television Simplified by Milton S. Kiver} Most complete book on TV written. Every stage and part of receiver carefully explained. 637 pages of updated data. Graphs. diagrams. giant charts. Regularly \(\$ 9.95\) Club price \(\$ 7.95\)

\section*{Basic Transistor Course}
byPaul R.Kenian
Teaches you transistor fundamentals clearly, simply. Discusses transistors all the way from elementary circuits to the way firem
Regularly \(\$ 5.75\) Club price \(\$ 4.50\)
Horizontal Sweep Servicing Handbook by Jack Darr
Fast, simple methods of locating and repairing troubles in the sweep system. Lots of practical shortcuts, developed and proved on the bench.
Regularly \(\$ 5.75\) Club price \(\$ \mathbf{4 . 5 0}\)
Basic Radio Course (revised and enlarged) by John T. Frye
The original sold out through eight printings! This lighthearted course in practical servicing techniques is now completely revised and updated. Regularly \(\$ 5.75\) club price \(\$ 4.85\)

Basic TV Course by George Kravitz Up-to-the-minute television-even covers transistorized portables! Presents technical detail in easy-to-follow writing style. A must book.
A must book.
Basic Industrial Electronics Course by Alfred Haas
A practical, simplified approach to industrial electronics - the branch where earnings are nearly limitless; opportunities always open to skilled technicians. Regularly \(\$ 5.95\) Club price \(\$ 4.70\)
Basic Electronic Test Procedures by Rufus P. Turner
Solves test and measurement problems in every phase of electronics-from radio to rockets. Practical course and reference for student, teacher. and technician. Regularly \(\$ 8.50\) club price \(\$ 5.95\)
Practical Television Servicing
by Richard Johnson
Explains everything necessary for rapid location and remedy of receiver troubles. Theory included only when it makes servicing easier, faster, more profitable. Regularly \(\$ 7.95\) Club price \(\$ 6.75\)


Transistor Reference Book
Contains the most complete and up-todate listing of semiconductor types available. with comprehensive specifications on each type.
Regularly \(\$ 6.00\)
Club price \(\$ 4.50\)
Semiconductor Devices
by Rufus P . 'Iturner
Fxplains the theory of semiconductor de vices in simple language and shows numerous applications. Profucely illustrated with hundreds of drawings and photo graphs.
Regularly \(\$ 6.00\)
Club price \(\$ \mathbf{4 . 8 0}\)
Electrical Appliance Service Manual by Willam Gabbert
Fxpand your business! You can earn more with this complete guide for fast. easy repair of home electrical appliances Fully illustrated. easy-to-follow charts. Regularly \(\$ 6.75 \quad\) Club price \(\$ 5.75\)

Radio Servicing Made Easy
(2 vols.) by Leonard C. Iane
Get the latest servicing information on new radio, types. Full instructions on how to hx FM, M, AM FM conmmicataons teceivers, marine radios. transistors.
Regularly \(\$ 9.95 \quad\) Club price \(\$ 7.75\)

\section*{The Oscilloscope}
by George //wick
A complete, practical easy-to under stand guide to one of the most useful of all servicing instruments. Tells how to Het more out of the scope in AM, FM and "IV servicing-how to handle tough job, faster'
Regularly \(\$ 5.20\)
Club price \(\$ 3.95\)

\section*{Elements of Electron Physics}
by Norman H. Crowhurst
Explains in simple understandable languige the how and why of electronics Covers election theory, senticonductors, tubes. curcuis

Club price \(\$ 4.45\)
How to Build Tiny Electronic Circuits b, Morris Moses
Explains " miniaturized" electronics for the hobbvist. experimenter and service tectimician.
Regularly \(\$ 5.85\)
Club price \(\$ 4.95\)
New Shortcuts to TV Servicing
(2 vols.) by Leonard C. Lane A practical servicing speed-tup course. Ni theory or math. but heavy on test ant repilt technigues that solve lime anc
make mon. Regularly \(\$ 9.90\)

Club price \(\$ 6.50\)

\section*{Basic Math Course for Electronics}
by Henry Jacohowitz
I earn electronic mathematics and be miles ahead of vour competitors. Use the lem in and out of the shop.
Regularly \(\$ 6.45 \quad\) Club price \(\$ 5.15\)
Industrial Electronics Made Easy

\section*{by Tom Jaski}

Shows you opportunities in industrial electronics-and gives you the know-how to take advantage of them
Regularly \(\$ 5.95 \quad\) Club price \(\$ 4.35\)
MAIL COUPON TODAY!
ing markers. shochproofing tool handles and leakproofing hydraulic fittings and plumbing.-Surprenant Mfe. Co., Div. of \(1 T \mathrm{~T}\), Clinton, Mass.

PRECISION TOOLS CAIALOG. 16 pages, punched for ring binders. Photos. Data cover: burnishers, cleaning spray, cutters. files, tools kits, microscopes, mirrors, pliers. screwdrivers. tweezers, vises and other precision electronic tools for servicing equipment and relays.-Jonard Industries Corp., 373.3 Riverdale Ave., Bronx, N.Y. 10463

FUSES ANI) FUSE HOLDERS. Forms SFB US. HI.-16.3 (latter two are supplements), punched for ring binders; 24 pages, 3 colors. with drawings, dimensions, weights, blowing-time charts, resistance. voltage ratings. vibration characteristics of Buss fuses. Fusetrons. and fuscholders.- McGrawEdison Co.. Bussman Mfg. I)iv.. St. I.ouis, Mo. 63107

WIIITARY SPECS WALL CHART, 2-color, \(20 \times 26 \mathrm{in}\). All current militars specs ir detail for all fixed capacitors,-Federal Pacific Electric Co.. Cornell-I)ubilier Electronics IIS... 50 Paris St, Newark I. V.J.

RESISTORS DAI SHEET. ( \(\mathrm{E}-2.12\) Single lonseleaf sheet with specs. chatacteristics and derating curve on 4 types of \(C\)-style tin oxide lilm resistors: design tolerances. Corning Electronic Components, Corning Gass Worhs. Raleigh. N.C.

CAPACITOR CATAIOG ANJ PRICE LISI Miniature Alumalytic Capacitor- (General Electric Type \(761^{\circ}\) ), from 3 to 150 volts. Chatacteristics and dimensions. Fatings. catalog numbers. curve- specs and separate price sheet. 9 pages. line of 109 capac-tors.-Seniconductor Specialists. Inc., 5700 W . North Ave.. Chicago. Ill. 606.39

BULLETIN ( \(E\) EA-7850), 6-page, 3-color folder with photos, specs and diagram describes the TE-17-A Educational Television Operating Center. a system of audio and video components for originat tion of broadcast or in-school IV programs.-
General Electric Co.. Visual Commanication ProJucts. 212 W, Division St.. Syracuse. N.Y.

TRANSISTORIZED LEARNING IABS, 12page irochure ( \((\operatorname{LEA}-7.50)\) gives details and illustrations on teacher's control console, ape decks and recorders, amplifiers, student booths, headphones and microptiones.-General Electric Co.. I'istal ('ommantication Profacts. 212 W'. Division St.. Syracuse, N. Y

WALL CHART ol "yuick-disconnect" devices, \(8 \times 1 t\) in. 2-color, has Id atual samples mounted on it in categories such as snap phags, push-on terminals. adapters. insulated smap plag and tab receptacles. etc. Form \(D /\) - -3 .-Waldom Electronics, Inc., 4625 W. 53 rd St. Chicago 32. 111.

VARACIORS CHIRI for harmonic generator applications. 6 pages. 3 colors. indicates appropriate varactor for doubler. tripler and quadrupler circuits for given input frequency range and power level.-symania, semiconductor Div., 100 Sylvan Rd., Woburn. Mass.

UITRANINIATERE CAIACITGRS. Bu/ letin NPJ-7.3l. single looseleat page, giver photo, specs and stock listing of TTC-type electrolytic capacitors. so small that markings are limoted to voltage and capacitance. - Aerovoc Corp., Distributor Din.. New Bedford. Mass.

PHISE CIICELITION NOVIOGRAPH covers frequency range from 200 to 10.000 mc , makes quick conversion from wavelength to distance along a slotted line in centimeters, Useful in Smith Chart calculations in condatetion with slotted-line measurements.-General Radio Co. West Concord. Mass.

CATALOG SHEET. Single loose-leaf addition 10 Ferfoxcube catalog listing 17 Ferroxkits with
short descriptions. shotos, and prices.-Ferroxcube Corp. of Imerica, Saugerties, N.Y. E\D

> Any or all of these catalogs, bulletins, or periodicals are available to you on request direct to the manufacturers, whose addnesses are head do not use postcards. To facilitate identi fication, mention the issue and page of RADIO. ELECTRONICS on which the item appears.
> UNLESS OTHERWISE STATED, ALL ITEMS ARE GRATIS. ALL LITERATURE OFFERS ARE VOID AFTER SIX MONTHS.

\section*{Outperforms Finest Vacuum Tube Units}

NEW SCOTT 312
SOLID STATE
FM TUNER
... yet it's only \(\$ 259.95\) !


Scott announces a top-performing solid-state FM stereo tuner at a modest price... a no-compromise tuner that exceeds the performance of conventional tube units . . . it's factory-guaranteed for 2 full years. Not just a redesigned unit, the Scott 312 incorporates an entirely new approach to tuner circuit design:


Exclusive "Comparatron" provides foolproof silent automatic stereo switching. Momentary changes in signal strength will not cause stereo to switch in and out as do ordinary automatic devices.

"Flat-Line Limiting" circuits assure quiet, noise-free \(F M\) reception, impervious to outside electrical interference. There's actually less than 1 db difference in tuner output whether you listen to a strong local station or a weak distant one.

H. H. SCOTT, INC. Dept. 570-08 111 Powdermill Road, Maynard, Mass.

Please rush me complete information and specifications on the new scott 312
\(F M\) solid-state tuner, plus Scott's fullFM Solid-state tuner, plus Scott's fullfor 1964 . page Guide to Custom Stereo

\section*{Name}

\section*{Address}

City
State_Zip
Export: H. H. Scott International, 111 Powder-
Mill Road, Maynard, Mass. Cable HIFI Canada:
Atlas Radio Corp., 50 Wingold Avenue, Toronto


\section*{THE BOUNCING CHECK}

\section*{GATHERS NO CASH}

An article by Bill Dufer. Jr., in the May NATESA Scope brought together several noteworthy hints on handling the bad-check problen. The suggestions were more preventive than curative, but that"s as it should be. Better not to accept a bad check in the first place than to try and make it good later.

One radio-TV technician, the article says, has installed in his shop a bulletin board on which he tacks up local "wanted" posters-photos and descriptions of "paperhangers" thought to be working in the vicinity. The board also bears up-to-date newspaper clippings of sentences meted out to check passers who have tried to bamboozle local merchants.

This same technician also has posters on his wall: "Please check your current checking account balance before
tendering us a check." Such posters, the author points out. do not offend customers whose intentions are honorable. If they irritate those customers whose intentions aren't honorable-well, who wants them, anyway?

Another shop insists that every customer who wants to pay by check show a checkbook and a deposit slip not more than a week old. unless the owner knows him personally. Every patron who tenders a check for "services rendered" receives a "conditional receipt"-a service invoice with the words "If this invoice has been paid by check, it will not be considered as having been paid until check clears our bank.

If the customer gets cash change, the amount is noted on the invoice, and the customer must sign it. The shop will not pay out more than \(\$ 10\) in cash to anyone not personally known to them.

\section*{FTC FILES AGAINST}

\section*{DELAWARE VALLEY ASSOCIATION}

Two former executives and present directors of the Television Service Association of Delaware Valley have been ordered by the Federal Trade Commission to appear at a hearing in Washington on July 20 ,

The FTC notified them that they would have to answer complaints against the local organization, and respond to a cease and desist order regarding the following charges:

That the TSADV was inciting servicers to boycott parts distributors who continue selling to the public or to nonservicing dealers: and that TSADV was intimidating distributors' organizations and advocating a policy of blacklisting distributors who didn't stop open selling.

Named specifically in the complaint were Herman Shore, former president and current member of the group's board of directors, and Raymond Fink, former recording secretary and now a director.

\section*{MILITARY MOONLIGHTER ORDERED TO HALT}

Some members of the King County (Washington) Telcvision Service Association noticed a TV service ad that gave a local military base (Fort Lawson) telephone exchange and featured evening service. TSA called the commanding officer of the post to ask about the Army's regulations covering use of military facilities for a commercial en-

\section*{ deal ever peA
OFFERED! \\ }

FREE—— 1 DOLLAR BUY WITH EVERY 10 ORDERED_-PLUS FREE GIFT
 UNIVERSAL 4" PM SPEAKER S1 Alnico 5 magnet, quality tone
ELECTROSTATIC 3" TWEETER \$1 SPEAKER for FM , HI-FI. etc..
2 - UNIVERSAL \(21 / /^{\prime \prime}\) PM \(\$ 1\) SPEAKERS firr Ratios. Inte
 \(3-\) AUDIO OUTPUT TRANS. \(\$ 11\)
FORMERS 3 - AUDIO OUTPUT TRANS. \$1 FORMERS 6KW. Wis
3 - AUDIO OUTPUT TRANS. \(\$ 1\) FORMERS \(314,4,314,3.3 .4\)

15 RADIO OSCILLATOR \(\$ 1\)
3- I.F. COIL TRANSFORM. \(\$ 1\)
\(3-1 . F\) COIL TRANSFORM- \(\$ 112\)
 3-1/2 MEG VOLUME CON- \(\$ 1\)
TROLS with swith, 3" haft TROLS with swithe 3 " haft .. 1
\(\mathbf{5}\) - ASST. 4 WATT WIRE. \(\$ 1\) WOUND CONTROLS 10 - ASSORTED VOLUME \(\$ 1\) 5-ASSORTED VOLUME CON- \(\$ 1\)
TROLS with switeh .........
\(\square \quad\) s-I.F. COIL TRANSFORMERS \(\$ 1\) 5 - aUdIO output trans. \(\$ 1\) FORM sub-min fur Trans Radios \(\$ 1\) 5-PNP TRANSISTORS general purpose. TO-5 5-NPN TRANSISTORS 10-DIODE CRYSTALS IN34 \$1 10-ASST, DIODE CRYSIALS \(\$ 1\) 5-N60 AnIt 5-1N64. 2-SILICON RECTIFIERS
\(750 \mathrm{ma}, ~ 4100 ~\) 25 - SYLVANIA HEAT SINKS \$1 70 RESISTORS ASORTED in : 1 WATI \(\$ 1\) 35 - ASSORTED
RESISTORS NOME in
2 Oric WATI \(\$ 1\) \(\underset{\text { a*st. }}{\text { 50-PRECISION }}\) RESISTORS \(\$ 1\)

20 - ASS'TED WIREWOUND RESISTORS, 5. 10. -20 watt .. \(\$ 1\) 6 - ASST. SELENIUM RECTI-2-LOOPSTICK ANTENNAS hi.vain. ferrite. ANJustahle

10-TOGGLE SWITCHES SPST 5- ASSORTED TRANSFORM- \(\$ 1\)

CHAPT ZU DI MITZIA "'JACK. \(\$ 11\)
POT" doubte your money wack 11
if not completely satisfied
with plug slandiard tirands CORDS \(\$ 1\)
WIRE \({ }^{4}\) 4 IIferemt colurs..... \(\$ \mathbf{1}\)
S0' - INSULATED SHIELDED \(\$ 1\) 32'-TEST PROD WIRE deluxe quality, redd or black .. \$1 50'-HI-VOLTAGE WIRE \(\$ 1\) 200'-BUSS WIRE \#20 tinned \(\$ 1\) 10 SETS - DEIUXE PLUGS \& \$1 JACKS asil. fur many puryoses 3-CONNECTORS \#PL-259

3-CONNECTORS \#SO-239
3-3" RECORDER TAPES
1-SQ. YARD GRILLE CLOTH \$1
8-ASST. LUCITE CASES
hinged cover, handy fur parts.
30-BALL POINT PENS \(\quad \$ 1\)
"EASY CUT" FIBERSCREEN \$1 FITTER \(15.5 \times \times 2.14\) " "uls to size for any Air Conditioner, perfect fit 4-TRANS. RADIO BATTERIES
9

MARKET SCOOP COLUMN1000' SPOOL HOOK-UP WIRE \$1 \#22, sollid, hitack. \$6.50 value \(\$\) 1000-ASST. HARDWARE KIT \$1 1000-ASSORTED RIVETS \(\$ 1\) 1000-ASSORTED WASHERS \$1 100'-STANDARD ZIP CORD \(\$\) 2 conductor \#18 white or hrown \(\$\) \(100^{\circ}\)-MINIATURE ZIP CORD \(\$ 1\) 100-ASST. RADIO KNOBS all selected pemplar types... \(\mathbf{\$ 1}\) 100-RADIO \& TV SOCKETS \(\$ 1\) all type 7 pith. 8 pin, 9 pin, etc. 1 100-ASST. TERMINAL STRIPS \(\$ 1\) 100-ASST. CERAMIC CON. \(\$ 1\) DENSERS some in ...... 1 100-CERAMIC CONDENSERS \(\$ 1\) 100 - ASSORTED \(1 / 2\), WATT \(\$ 1\) 100 - ASST \(1 / 4\) WATT RESIST. \(\$ 1\) STARIITE TRANSISTORRADIO \(\$ 1\) has Cabinet. speaker \& many 1 Datis-sold as-is \& pot-luck \(100-\) MIXED DEAL "JJACK.
POT"
Contensers.
Resistors, POT"' C

terprise in competition with civilian businesses outside the base.

The post commander agreed that the free telephone, free rent and other taxfree benefits were a definitely unfair means of competition to outside establishments that couldn't have such advantages.

After investigation, the CO called TSA to assure them that the specific operation had been closed down, and that the post's daily bulletin would warn all personnel on the base that such operations are prohibited.

\section*{SEMICONDUCTORS INVADE \\ AUTOMOBILE FIELD}

The automobile industry spent more than \(\$ 15\) million for semiconductor devices in 1963. According to D. 1. Van Blois. graduate student at Michigan State University, the expenditure for 1965 will be about \(\$ 20\) million, and in 1970 possibly \(\$ 65\) million.

The most important use of semiconductors in automobiles, Van Blois said, was in car radios, which in 1963 represented \(\$ 8.2\) million. Next significant use is in car alternators. At about 6 diodes per car, \(\$ 7.7\) million was spent in 1963.

The transistorized voltage regulator is another important semiconductor adjunct, though cost is keeping down its wide-scale use. Transistor ignition is also, of course. one of the most rapidly growing consumers of semiconcluctors. Now available as an optional item on Pontiac and Chevrolet cars and Ford
trucks, its use is expected to spread rapidly

Other uses of semiconductors are in temperature control systems ("Comfort Controls") automatic headlight dimmers, auto horns, fuel pumps and synchronized clocks.

\section*{SWEDE TV VIEWERS UNHAPPY WITH TV do SOMETHING ABOUT IT}

A novel form of TV entertainment has been proposed by about 400 discontented television viewers of Smedjebacken, Sweden. According to a recent Reuters report. Llf Jansson, a caretaker. stated, "We are tired of television and of staring stupidly at the screen. Now we aim to get together and have some fun instead. We will hold a dance here on Saturday and after the dance we will make a bonfire of 400 television sets."

\section*{infrared radiation \\ new service technique?}

Infrared radiation from electronic components can be used to identify shortlife parts and predict the reliability of circuits. This statement was made by A . Feduccia of Rome Air Development Center, Griffis Air Force Base, New York, to the International convention of the IEEE.

An infrared camera is used to make thermal photographs (thermographs), showing the temperature distribution over desired areas. Cold areas are darker. As components become warmer, they
appear as lighter and lighter grays. Thus a thermograph of the underside of a chassis, printed-circuit board or single component can show immediately whether any areas of the components are hotter than normal, as indicated by comparison with a thermograph of knowngood equipment.

\section*{transistor antennas \\ INVADE BRITAIN}

An electronics engincer in Devon, England, claims to have invented a cigar-ette-pack-size transistor-and-battery device that makes outdoor TV antennas unnecessary and at the same time improves reception.

The unit, reminiscent of our recent endeavors in "antennaless antennas". is apparently some sort of booster, since it is described as plugging between set and indoor antenna. It sells for approximately \(\$ 12\).

A British reporter who attended a demonstration of the new device told of "a brilliantly sharp picture and no interference."

David Sarnoff, chairman of RCA, predicts 3 -D wall TV by the end of the century. He also said: "Ultimately, individuals equipped with miniature TV transmitter-receivers will communicate with one another via radio. switchboard and satellite, using personal channels, similar to today's telephone number."

END

IMMEDIATE DELIVERY... SCIENTIFIC LIGHT PACKING for safe delivery at minimum cost. HANDY WAY TO ORDER-Pencil mark items enclose with check or money order, add extra for shipping, excess refunded with advantage to customer. Tearsheet will be returned with order, as your packing slip.



MARKET SCOOP COLUMN \(\square \quad \begin{aligned} & \text { \$I7.50 WEBSTER DIAMOND } \$ 1 \\ & \text { CARTRIDGE \#SC? }\end{aligned}\) CARTRIDGE \#SC?-L stereo .. 1
RONNETTE DUAL SAPPHIRE \(\$ 1\) RONNEITE DUAL SAPPHIRE \(\$ 1.1\)
CARTRIDGE flipover type.... 1.
 3 SAPPHIRE STYLUS NEEDLES \(\$ \mathbf{1}\) \(\underset{\text { guaranteed }}{\text { 3- } \$ 2.50}\) SAPPHIRE NEEDIES \(\$ 1\) 50-G.E. FLASHLIGHT BULBS \(\$ \mathbf{1}\) 4-IBM COMPUTER SECTIONS \(\$ 1\) 8 - TV ELECTROLYTIC
range popular types
COND \(\$ 1\) 3-G. E. COMPUTOR SEC. \(\$ 1\)
TIONS parts ......................... \(\underset{\text { Minneapolis }}{\text { Honeywell, latest }} \mathbf{\$ 1}\) type
2-STANDARD ELECTROLYTIC \(\$ 1\)
CONDENSERS 4110.400 V 3-STANDARD ELEC CON. \(\$ 11\)
DENS \(20 / 20-450 v\) serves ns 40.
 10-1TT SELENIUM RECTIFIERS \$1 8-ITT SELENIUM RECTIFIERS \(\$ 1\).


 assorted your choice .... 3 for \(\$ 1\)


\section*{BRAIN-WAVE AMPLIFIER}

This simple-appearing amplifier uses a 2 N 2714 in its input circuit to handle much lower voltages than do ordinary transistors. The 2N2714 is an epitaxially grown passivated unit designed
nals from 0.5 to 30 cycles. Remove the \(1-\mu \mathrm{f}\) capacitor across the transformer and the bandwidth rises to 20 kc . Input can be as low as 5 microvolts at 10 cy cles and must not exceed 1 millivolt.

for high-gain, low-noise applications. With selected transistors, the amplifier's gain can be as high as 500.000 .

The amplifier was clesigned for brain-wave potentials and handles sig-

Operated within its range, the amplifier makes a fine scope preamp. A step attentator can be used to increase the range.-Tom Jaski

\section*{MORE ON THE SIGNAL INJECTOR}

A number of readers constructed the \(1-\mathrm{ke}\) phase-shift oscillator described in "Build a Signal Injector Into Your VTVM" (Radio-Eiectronics. April

1963) and have requested information on adapting it for other applications. Some want to use it as a troubleshooting accessory with battery power and a lowimpedance output for feeding low-impedance mike inputs. Fig. 1 shows the circuit modified to comply with these requests.

The 25,000 -ohm output potentiometer has been replaced by a transformer with a 100 -ohm output impedance. (I used an Argonne AR-150 input transformer with the primary connected

as the secondary.) The original circuit received its power from the vtvm. The version in Fig. 1 uses a 9 -volt battery

such as the RCA VS-300A. The maximum output level is 0.15 volt. After 8 hours of continuous operation, the output drops not more than . 03 volt.

Some constructors wanted both high- and low-impedance outputs so they would have the high output (up to 5 volts) for feeding directly into power amplifiers. Fig. 2 shows how the output circuit can be modified. \(S 2\) selects the desired output.

Several readers report constructing the oscillator in a \(15 / 8 \times 21 / 8 \times 31 / 4\)-inch aluminum utility box and carrying it in their tool box for testing and trouble-shooting.-Harold Reed

\section*{ADD A 2-KV RANGETOEICO VTVM}

The versatility of Eico model 214 and 221 vacuum-tube voltmeters can be increased by doubling the upper voltage range of 1,000 volts dc. The 2,000 -volt range permits troubleshooting highervoltage devices such as oscilloscopes and medium-power transmitters. Since these generally employ voltages rang-

ing between 1.000 and 2,000, you can't check them ordinarily without a highvoltage probe-with its inherent excess range multiplication.

Many Eico vtvm's employ a range-selector switch with an unused position beyond 1,000 volts. A simple circuit change utilizing this extra switch position permits adding a \(2.000-\) volt range without difficulty. The original voltage-divider resistor to ground in the meter on the 1,000 -volt range position is 50,000 ohms, \(1 \%\). To add a 2.000-volt range, substitute two \(25,000-\) ohm \(1 \%\) resistors for the 50,000 -ohm unit. The diagrams show the original and modified circuits. The photo shows the modified range switch. If the lugs on the other sections of the range switch for this position are not wired connect them to the lugs corresponding to the 1,000 -volt position. To prevent breakdown of the probe resistor, two series-wired 7.5 -megohm \(1 / 2\)-watt \(5 \%\) (or better) carbon-composition resistors should be substituted for the original 15 -megohm \({ }^{1 / 2}\)-watt \(5 \%\) resistor. As an additional safety precaution. a more effectively insulated probe may well be used.

To use the vtvm on this new range, all readings made on the \(1,000-\)

\((0-10)\) volt scale are multiplied by 2 . -Harold J. Weber
|Eico engineers report that this is a worth-while modification but stress the fact that the switch insulation may break down. Keep the switch wafer clean and free of flux, dust and other foreign matter that may cause arcing or high-resistance shorts. They warn that this modification is limited to the dc voltage range. Attempting to measure over 1,000 volts ac is likely to damage the ac rectifier.-Editor]

\section*{VERTICAL DEFLECTION CIRCUIT}

The 1964 Philco chassis have a number of interesting features. Among them are the unusual vertical size compensation circuit and a vertical size control that replaces the height control in earlier circuits. The vertical deflection circuit in the 14 G 20 chassis is shown in the diagram. Minor circuit variations are used in other recent chassis.

The varistor is a sort of automatic size control. It prevents any changes in the brightness setting or CRT operating level from affecting the overall height of the picture. During the retrace interval, high positive peaks are developed in the output transformer and across the .022- f capacitor and varistor in series. The varistor's resistance drops and the pulse is absorbed in charging the capacitor. During the normal sweep, the varistor's resistance returns to normal. The capacitor discharges through R24. R16, the VERT SIZE control and R53, and develops a negative voltage across this network. This biases the output stage.

\section*{for the critical recordist... ANOTHER "FIRST" FROM UNIVERSITY}


\title{
It's shock-mounted! It's a dynamic! It's a cardioid! And it's only \$29.95 (It's also guaranteed for 5 years!)
}

Today...from the laboratories of University... an advanced technology has produced a great new microphone for the critical home recordist. It represents a clean and dramatic break with tradition-with outmoded notions. Considering its moderate price, you would expect it to be an ordinary crystal, carbon-or at the most, dynamic omni-directional. It isn't. The 8000 is a cardioid dynamic typical of the finest professional recording microphones. With its superb directional characteristics, it virtually eliminates background noise. You can work close or far-you will achieve a degree of clarity and definition you never thought possible before. Response: \(70-13,000 \mathrm{cps}\). Sensitivity: -156 db (EIA). Output Level: \(-59 \mathrm{db} /\) \(1 \mathrm{mw} / 10\) dynes \(/ \mathrm{cm}^{2}\) ? Includes 15 ft . cable with choice of high or low impedance at the Cannon plug and receptacle! Includes desk stand adaptor.

Only \(\$ 29.95\).
For complete specifications, write Desk RE-8, LTV/University, 9500 West Reno, Oklahoma City, Oklahoma,
LTV UNIVERSITY
A DIVISION OF LING-TEMCO-VOUGHT, INC.
 tional to the amplitude of the vertical deflection voltage, it varies the bias in the direction that holds height constant.

The vert size control is unusual in that it affects the top and bottom of the picture. (Most height controls affect only the top of the picture.) The B-boost voltage ( 300 volts) is fed to the bias network for the output stage. When the brighteness control is advanced, the beam current increases. the high voltage drops and the picture tends to expand. However, as the high voltage drops. the boost voltage decreases in proportion. The voltage across the size control becomes more negative. The bias increases and the deflection voltage is reduced to hold picture size constant.-H. Maxwell

\section*{try This one}


\section*{NEON PILOT is ready light}

By connecting a small neon lamp (like one of the NE-2 or NE-51 series) as shown in the diagram below, you can make a pilot light that indicates when


B-plus is up to full operating value. To set up the circuit, connect the

\section*{High School "Grads"}

You don't need college to have a fascinating job, a bright future, big pay and advancement.
founded
 Those who don't know the facts
say that only the college Whay that only the college good jobs in indusgood try. Wrong! But
 erage highschool graduate gets
only the poorest kind of jobunless he has additional training in a specialized field. For these men the biggest and fastest growing field open today is Electronics-all branches. Jobs are lookweeks in the Electronic Labs of Coyne in Chicago, the Flectronics Center of the Country. Most of your tuition can be paid after you graduate.
Like the great universities, Coyne School is an eduLike the great universities, Coyne School is an edu-
cational institution not for proft. A Coyne diploma cational institution not for prof
gives you high standing with gives you high standing with hold ton jobs in Electronics all over the world.
See how little it costs to ret the training youstsed Don't put it off Make your own decision Send us your name, address now-this coupon or a postrard will do. No salesman will bother you at your home. All information is FREE
Coyne Electronics Institute, Chicago 60607, Dept. C4-N
Coyne Electronics Institute, Dept. C4-N
Coyne Electronics instit
1501 W . Congress Phwy., Chicago, III. 60607
Please send Free konk ' Your Opportunities in Elec. tronics." I am under no obligation--no salesman will call at my home

I Name. Phone

lamp across R2, 100.000 ohms, and use a 1 -megohm pot as RI, set to maximum resistance. Reduce the pot's resistance until the lamp just fires. Measure the resistance and use the next lower \(10 \%\) \(1 / 2\)-watt fixed resistor. - Irwin Math, WA?NDM

\section*{TWO-FACED TAPE HOLDS TURNS}

If you wind your own coils on smooth plastic or Bakelite forms. take a couple of strips of double-faced plastic

tape and place them on opposite sides of the coil form. lengthwise. The sticky, low-loss tape will hold each strand of wire securely in place so that the coil can be wound easily and spaced accurately. - John A. Comstock

\section*{RESISTORS "SPLIT" TRANSFORMERS WINDING}

Occasionally you may need to drive a push-pull stage, yet not have a split or center-tapped transformer. or room for a

phase inverter. Use a single-plate-to-single-grid transformer with a pair of closely matched resistors \(R\) connected as shown here. Values from 47.000 to 470 . 000 ohms are usually satisfactory.Irwin Maht
| This method is not generally good for class-AB, or -B amplifiers, which must have low grid impedances.- Vditor \(]\)

\section*{CLOTHESPIN WIRE STANDOFFS}

Need some standoff insulators for a radio or TV Icad-in?


You can make ordinary plastic clothespins into low-loss standoffs for round or ribhon wire. Simply saw off the legs of each pin and cement them back in place at an angle to form feet. Don't try to heat and bend the legs, for they will probably break. Most any good plastic cement may be used. Mount the insulators with small nails driven through the holes in the feet.-John A. Comstock

\section*{INTENSITY MODULATING HEATH IO-10}

To add intensity modulation to the Heath IO-IO de oscilloscope, all that is needed is one high voltage capacitor.

connected to pin 2 of the CRT socket. and one new binding post. There is plenty of space for the post on the rear panel of the scope.-Tom .aski

\section*{storing spare plugs}

In areas where you meet several kinds of power receptacles, compatibility is a problem. Sometimes adapters are available: sometimes not-the only choice is to change the plug. The problem here


Photo by Morgan S. Gassman, Jr.
is that the unused plug is likely to get lost.

I saw a Western Union maintenance shop solve the problem as shown in the photo. The unused connector is slid back on the cord and fastened with the cable clamp. The required fitting is installed as usual. The unused plug can't possibly be lost, and is available right away when it's needed.-Roy E. Pafenberg

\section*{transistor test leads}

Many times it is impossible to remove a transistor completely for insertion in a transistor tester. and many testers have no provision for connecting test leads. The easiest way to make the proper connection is to insert ordinary straight pins into the transistor socket of the tester. (Bend them away from

each other to avoid shorts.) Then use ordinary test leads or clip leads, with alligator clips at both ends. to complete the connection between tester and transistor.

If you have to do in-circuit testing frequently, it is a good idea to make a plag to fit the tester. One can be made easily by opening a dead transistors case and soldering to the leads on the inside. Cut all leads on the outside to \(1 / 2\) inch and straighten them out. The other ends of the three leads soldered to your new plug should be fitted with alligator clips. Lathel the elips C.E and B.-Ronald S. Newhower

\section*{COMPRESSED AIR AIDS PRINTED CIRCUIT REPAIR}

Any radio or television technician who has worked in a shop where compressed air was avaliable is well aware of the contribution this facility makes to volume, high yuality service. A well lighted cleaning booth with forced ventilation and a medium-pressure air hose will make light work of even the dirtiest chassis.

Those who have toiled over removing multiple-lead components from a printed-board cercuit will be happy to learn that a blast of compressed air is just as effective in removing excess molten solder. Use a small iron for just as long a time as necessary to melt the solder. The instant the iron is removed. direct a blast of compressed air at the connection. The solder will lift off, leaving a clean tinned board. Direct the air blast to avoid splattering components. such as variable capacitors. that are easily damaged. There is much less mess that would be expected since the solder is cooled and solidified by the air the instant it is lifted from the connection.

This method is equally effeetive in removing the excess solder from those difficult sweated-solder jobs.-Roy \(E\). Pafenberg.

END

\section*{IODINE EATS RUST}

A few drops of iodine on the rust that binds a bolt or screw will quickly loosen the most rust-seized component. The iodine dissolves the rust in a hurry. -Harry J. Miller

\title{
ELECTRONICS DATA HANDBOOK
}

\author{
By MARTIN CLIFFORD
}

\author{
160 PAGES \\ G/L No. 118 \\ \(\$ 295\) \\ PAPERBACK \\ \$4.60 Clothbound
}
- For technicians, engineers, stucents, hobbyists, hams, experimenters. Arranged in logical, orderly fashion for quick easy reference m A basic book for your library
If you had only one book in your professional library, this would have to be it. This single volume answers such everyday questions as these: What formula do I need for this problem? Is there an easier formula? Where can I find the data I need? What substitutions can I make in formulas? What sequence of formulas must I use if I need to work with several of them? This one book gives you all the answers, grouped under appropriate headings. You'll wonder how you ever got along without it. Send for your copy today.

\section*{PARTIAL LIST OF CONTENTS}
D. C. Resistors in series. Resistors in parallel. Resistors in series-parallel. Conversion of units. Resistance of a copper line. Length of a desired resistance. Calculating wire gauge. Resistance vs. tempera. ture. Forms of Ohm's law. Power. Voltage drops. Bleeders. Bias resistors. Batteries in series. Batteries in parallel. Batteries in series-parallel. Kirchhoff's laws. The voltage law. The current law.
A. C. Wave length. Period. Frequency. Instantaneous current. Instantaneous voltage. Pulsating direct current. Alternating and direct currents combined. Capacitors in series. Capacitors in parallel. Capaci-
tors in series-parallel. Amount of electricity stored in a capacitor. Capacitive reactance. Voltage distors in series-parallel. Amount of electricity stored in a capacitor. Capacitive reactance. Voltage dis-
tribution across capacitors in networks. Inductors. Inductors in series. Inductors in parallel. Mutual inductance. Coupled inductance. Inductors in series, aiding. Inductors in series, opposing. Inductors in parallel, aiding. Inductors in parallel, opposing. \(Q\) factor, Coefficient of coupling. Inductive reactance. Impedance. Phase angle. Ohm's law for alternating current. Power factor. True power. Apparent power, Resonance. Numerical magnitude of impedance... single resistor, resistors in series, single inductor, inductors in series, single capacitor, capacitors in series, resistance and inductance in series, resistance and capacitance in serjes, inductance and capacitance in series, resistance, inductance and capacitance in series, resistors in parallel. inductors in parallel, capacitors in parallel, inductance and resistance in paralle, capacitance and resistance in parallel, inductance and capacitance in parallel, inductance, resistance and capacitance in parallel. inductance and series resistance in parallel with capacitance, and capacitance and series resistance in parallel with inductance and series resistance.
VACUUM TUBES Thermionic emission. Amplification factor. Dynamic plate resistance. Mutual conductance (transconductance). Gain of an amplifier stage. Voltage output Determining tube constants. Triode power output. Pentode power output. Maximum power output. Maximum undistorted power out efficiency, Negative feedback. Miller effect. Rectifier ripple. Filter formulas Regulation.
TRANSISTORS Emitter resistance. Base resistance. Collector resistance. Current gain. Voltage gain. Power gain. Collector capacitance. Cutoff frequency. Input impedance. Output impedance. Alpha. Beta. Negative resistance. Power dissipation. Power output.
ANTENNAS and TRANSMISSION LINES: Length of a Hertz antenna. Physical length vs. electrical length. Formula for "end" effect. Resonant frequency. Physical height in wavelengths. Antenna current. Antenna power. Characteristic impedance. Transmission line current. Transmission line peak voltage, Transmission line losses. Attenuation. Frequency. Field strength. Capacitance of a vertical antenna. MEASUREMENTS: D. C. resistance of milliammeter, Ohms-volt rating of a voltmeter. Ammeter shunts. Multi-range shunts. Voltage mulsipliers. Wheatstone bridge. Slide-wire bridge. Kelvin bridge Series and shunt ohmmeters. Measuring resistance with a voltmeter. Measuring inductance with voltmeter and ammeter. Measuring capacitance. Capacitance-resistance bridge. Wien bridge.
TABLES and MISCELLANEOUS DATA Copper wire table. Specific resistance and temperature coefficients. Table of common logarithms. Natural sines and cosines. Natural tangents and cotangents. Capacitor color codes. Dielectric constants. Transformer color codes. I.F. transformer color codes
- Buy now from your electronics parts distributor or mail in coupon
- Money-back guarantee within 10 days if not completely satisfied
- Books purchased for professional purposes are tax deductible

\section*{I GERNSBACK LIBRARY, Inc.}

154 West 14th Street, New York, N. Y. 10011
 .000001
Table I-Some Powers of 10
EVER ilad one of those equations that turned out like Fig. 1? Well. read on, brother, youve company!

Most technicians shy away from mathematics because of the assumed complexity. but plenty of mathematicians wouldnit open a transistor radio for fear of getting shocked.

I propose to show you how you can reduce those formulas with many numbers to mere shadows of their former selves. Take another look at that formula in Fig. 1. It's only the calculation of

Table II-Some Examples
34.865 cycles \(\quad 3.4865 \times 10^{4}\) cycles
\(3,600 \mathrm{pf} \quad 3.6 \times 10^{-9}\) farad
1,000 cycles \(\quad 10^{3}\) cycles
1 megohm \(\quad 10^{6} \mathrm{ohms}\)
\(17.5 \mathrm{mc} \quad 1.75 \times 10^{7}\) cycles
.00045 volt \(\quad 4.5 \times 10^{-4}\) volt .0018 microamp \(1.8 \bigvee 10^{-9}\) ampere
a coil and capacitor to resonate at 10 me. Complex?

Now look at Fig. 2. Believe it or not, it's the same formula.

\section*{The power of ten}

Ten is a funny kind of number, because we happen to have hased our numher system on it. 10 times 10 is 100.10 times 10 times 10 is 1.000 . In other words. every time we multiply by 10 . we add a zero to the right side of the number. Odd, isn't it? Instead of writing 10 times 10 times 10 ad nauseam. let's indicate how many times 10 is multiplied by itself with a superscript. A superscript is a number placed to the upper right of any other number. Thus. \(10 \mathrm{mut}-\) tiplied by itself 5 times (which equals 100.000 ) is \(10^{\circ}\). Note that this is different from 10 multiplied by 5 (which equals 50). This system gives us multiples of 10 from \(1\left(10^{\prime \prime}\right.\) equals 1\()\) to as high as youid like to carry it.

To get numbers between 0 and 1 , we can divide 10 by itself as many times

\section*{By JERRY L. OGDIN}
as necessary. We show numbers between () and 1 with a negative superscript, one with a minus sign. Therefore. OI or \(1100(1\) divided hy 10 times 10 ) is the same as \(10-\cdots\).

The purpose of using the powers of 10 is to indicate large or small numhers conveniently. For example. 1 me is 1.000.000 cyeles. From Table I. 1.000.\(O(0)\) is equal to \(10^{\circ}\) cycles.

Table I is only a guide. not a crutch. To find the power of 10 without using the tahle. count all the digits in the number. and subtract one. For our example. 1.000.000 has seven digits. Subtracting one leaves six. Thercfore. 1.000 .000 is equal to \(10^{4}\).

For decimals. count all the digits to the right of the decimal point. hut do not subtract. For another example, assume a l-pf capacitor. 1 pf is equal to .0000000000001 farad. Counting all the digits. We find there are 12. Becalase the number is a decimal, the superscript will be negative. Therefore. I pf is equal to 10-12 farad.

REMEMBER. use negative superscripts for decimals. and positive superscripts for numbers 1 or larger.

What happens when voure working with some value that isne evenly divisible by 10? Well. just multiply. If we were solving our frequency example for 5 mc . we could say that 5 mc equals 5 times 1 mc . Now solve for the power of 10 for 1 mc . The answer is written \(5 \mathrm{mc}=5 \times 10^{i}\) cycles
Using the system outlined above the answer will always be some number between 1 and 10 . times some power of 10 . Some examples are shown in Table II. Let's summarize so far:
a. The superscript is positive for numbers 1 or over.
b. The superscript is negative for numbers less than 1 .
c. The superscript mily be found for numbers from 0 to 1 by counting the number of digits to the right of the decimal point.
d. The superscript for numbers 1
\[
\begin{gathered}
\begin{array}{c}
L=\frac{1}{4 \pi^{2} C F^{2}}=\frac{1}{4 \times 100000000100000 \times .0000000005 \times \pi^{2}} \\
=.00000557
\end{array}
\end{gathered}
\]

Fig. 1 -In this disarmingly simple formula, \(L\) is inductance in hemries, \(C\) capacitance in farads, and \(F\) frequency in cycles per second. All you have to do is lose count of the zeros, and then where are you?
\[
L=\frac{1}{4 \pi^{2} C F^{2}}=\frac{1}{4 \times 5 \times 10^{14} \times 10^{-11} \times \pi^{2}}=\frac{.00557}{10^{3}}
\]

Fig. 2—Same formula, same nambers, expressed a different way. More convenient, becanse manipulation of powers of 10 uses just simple addition and suhtraction. Takes less space, too. Likelihood of errors is drastically reduced.

\section*{new \\ }

\section*{SEISMOMETER}

PATENT No. 3,118,126
Fred A. Brock, Kenneth E. Burg, and Markwick K. Smith, Dallas. Tex. (Assigned to Texas Instruments, Inc.)

Conditions helow the earth's surface can be explored with pressure or shock waves. Reflections detected by a seismometer indicate the composition and density of the earth's layers. This seismometer. designed for underwater placement, contains a piezoelectric crystal, a tube. a transistor

and batteries. It matches the high-impedance crystal and a low-impedance transmission line output. The tube, connected as a cathode follower. has an input impedance of several megohms. Its relatively low ouput impedance feeds the transistor, an emitter follower, which has an output impedance of only a few hundred ohmas.
\(V\) and \(Q\) are inside a compartment hemetically sealed against seepage. The crystal is constructed as a hollow cylinder. sensitive to pressure waves. A cable connects the instrument to a recording station on land.

\section*{AUTO BATTERY CHARGER}

PATENT No. 3,117,269
Louis Pensak, Princeton, N.J. (Assigned to Radio Corp. of America)

The battery is charged from rectified output of generator. D1 (a Zener diode) and \(R\) form a voltage divider for the base of \(Q\). Assume the switch is closed. If the battery voltage is low (discharged), D1 operates below Zener value and

does not conduct. The base return is to the negative terminal. Therefore \(Q\) conducts heavily, and passes charging current into the battery.

As the battery voltage rises, a higher voltage appears across D1. When the Zener value is: reached, D1 conducts and provides a path between base and the positioc terminal. If \(R\) is properly set, \(Q\) is blocked and overcharging is prevented.

D2 is a conventional diode that merely protects the transistor from bearing the entire back voltage if the generator should fail when the battery is fully charged. It can be omitted if the transistor's breakdown rating is high enough. END

\section*{SCHOOL DIRECTORY}

\section*{MATHEMATICS}

\section*{ELECTRONICS}

These courses are the result of many years of study and thought by the l'resident of IIISI, Who has persomally lectured in the classrom to
thousambs of men, from all walks of life, on thousambs of men, from all walks of life, on
mathematics and electrical and electronie engimathematics and electrical and electronie engineering.
You will have to see the lessons to apmreciate them! SICN NO CONTRACTS-you pay ONLY for the Lessons you order
Write today for your outline of courses. Youn
have nothing to lose, and evervthing to sain! The INDIAN, Home Study Institute Eastern Division 64 Hemenway Road Framingham, Mass

\section*{EARN on can earn an A.S.E.E. degree at home, College
lovel HOME STCDY courses taught so you can understand them. Continue your edueation, earn more in the highly pad electronics industry. Missiles, computers, transistors. autimation. complete electronies. Over
27.000 graduates now employed. Restdent sehool availathe at our Chieago campus-Founded 1934. Send
fur free catalog. \\ American Institute of Engineering \& Technology 1139 West Fullerton Parkway, Chicago 14, III.}


EIEngineering Technician A.S. Degree-2 Years Electronics Engineer B.S. Degree

Evening Courses Available
ELECTRONIC TECHNICAL INSTITUTE 970 W. Manchester Ave., Inglewood, Calif. 970 . Manchester Ave., Inglewood, Calif.
4863 El Caion Blvd., San Diego, Calif.

\section*{B. S. Degree in 36 months}

Small professionally-oriented college. Four-quarter year permits completion of B.S. Degree in three years. Summer attendance optional. Engineering: Electrical (electronics or power option), Mechanical, Civil. Chemical, Aeronautical. Business Ad-
ministration: General Business, Accounting, Motor ministration: General Business, Accounting, Motor
Transportation Administration. One-year DraftingTransportation Administration. One-year DraftingDesign Certificate program. Outstanding placement of graduates. Founded 1884 , Rich heritage. Excellent faculty. Small classes. 200 -acre campus. Well equipped labs. New library. Residence halls. Modest costs. Enter Sept., Jan., March, June. For Catalog and itw Book, write J. G. McCarthy', Director of
Adms.

\section*{}
\begin{tabular}{|c} 
LEARN TECHNICAL WRITING \\
Personal attention by the Professional \\
Technical Writers at CCS can prepare \\
you for an exciting career, through honne \\
study. Electronically oriented Technical \\
Writers earn \(\$ 10,000\) per year .... plus. \\
We offer you a free lessont \\
without obligation \\
CENTURY CORRESPONDENCE SCHOOLS \\
1186 Fay Ave., Dept. L, Largo, Fla. \\
\hline
\end{tabular}

microwave techniques - TV INDUSTRIAL ELECTRONICS COMPUTERS-RADIO TRANS MITTERS-RADAR-TRANSISTORS PHILADELPHIA WIRELESS TEGHICAL INSIITUTE 1533 Pine Streat Philadelphia 2, Pa, Founded hif 1908 - A hoe-Protil Gorp.

\section*{SCIENCE ENGINEERING}

Educationally-strong college courses it the fastest growing professinnal fields of Physics. Mathematics. Engineering (Nuclear, ElecTronic, Electrical): including Engineering Technology (Nuclear, Electronic). Optional fourquarter, all-year schedule permits completion of regular 4-year B.S. degree courses in three years; and. A.S. degree courses in twn years. Electronic Engineering includes computer and space communication systems: and, laser/in frared engincering. Fal. Quarter emrolments rimited. Write now to Director of Admissions or Catalog E-10

NORTHRIDGE COLLEGE of SCIENCE \& ENGINEERING

Northridge, California 91325


Learn Electronics for your SPACE-AGE EDUCATION at the center of
America"s aerospace industry No matter what your aerospace goal. You can get your training a Norkrop COLLEGE OF FNGINEFRING Get your B.S. degree in engineering in just 36 months by attending classes year round. Most Northrop Tech graduates have a job wating for them the day they're graduated!
A \& P SCHOOL. Practical experience pares you for \(F\) Anc-year course pre WRITE TODAY FOR CATALOG. NORTHROP INSTITUTE OF TECHNOLOGY 1199 W. Arbor Vitac. Inglewood. Calif.
when it's time to think of college you should read this
FREE CAREER BOOKLET
about electronics at

\section*{MSOF}

milwaukee
I SCHOOL M5.220
SCHOOL OF ENGINEERING
Dept. RE-864, 1025 N. Milwaukee Street Milwaukee, Wisconsin 53201
Tell me about an engineering career through residence study in \(\square\) Electrical fields
\(\square\) Mechanical fields
Name... .Age....... .......

Address.
City Sta


UNITED RADIO CO
OX 1000R, NEWARK, N.J.

have corries of Modern Electric readers.

In August, 1914, Electrical Experimenter
An Efficient Wavemeter, by Thomas W. Benson.

Sclenium Cells and How to Use Them, by "A Selenium Specialist".
Experimental Electricity Course, Lesson 13.

Wireless Receivers (A Compendium). A Variable Condenser for Receiving and Transmitting, by Irving Byrnes.
A Peroxide of Lead Detector, by James L. Green.

A High Frequency Transmitting Buzzer, by Thos. W. Benson.
The Marconi Fog-Gun.
An Automatic Radio Tuning Device, by Earl G. Stalnaker.
A New low Altitude Antenna.
The Boron Detector, by Ezechiel Weintraub.
new Bools

ORGAN BUILDERS MANUAL, by Robert L. Eby. Artisan Organs, 2476 N . Lake Ave., Altadena, Calif. \(81 / 2 \times 11\) in., 250 pp. Paper, \(\$ 5\)

Based on the author's Artisan organ, the book contains much information valuable 10 organ buiders in general.
BASIC ELECTRONICS, (2nd edition), by Royce G. Kloeffler, Maurice W. Horrell and Lee E. Hargrave, Jr. John Wiley \& Sons, 605 Third Ave., New York 16, N. Y. \(53 / 4 \times 9\) in., 643 pp . Cloth, \(\$ 11\).

An intermediate level text that covers transistors, tubes and circuits. Math is held to a minimum.

HANDBOOK OF TRANSISTOR CIRCUITS, by Allan Lytel. Howard W. Sams \& Co., Inc., 4300 W. 62 St., Indianapolis 6, Ind. \(51 / 2 \times 81 / 2 \mathrm{in}\)., 224 pp . Paper, \$4.95.

A compilation of industrial and experimental circuits using SCR's, Zener diodes, tunnel diodes and other semiconductors. Each is accompanied by parts list and descriptive writeup.

RELIABLE ELECTRICAL CONNECTIONS (Yol. 1). Space Publications, Inc., Times Bldg., 221 Holmes Ave., Huntsville, Ala. \(51 / 2 \times 73 / 4 \mathrm{in}\)., 68 pp . Paper, \(\$ 2\).

Covers handling of wires and components, soldering, protecting connections, lacing, problems of printed circuitry. With appendix and index

CITIZENS BAND RADIO HANDBOOK, by David E. Hisks. Howard W. Sams \& Co., Inc., 4300 W. 62 St ., Irdianapolis 6 , Ind. \(51 / 2 \times 81 / 2 \mathrm{in}\)., 192 pp . Paper, \$2.95.

Information for the hit-buider, technician and operator. Covers typical equipment and latest regulations. Many schematics.

MASERS AND LASERS, How They Work, What They Do, by M. Brotherton. McGraw-Hill Book Co., 330 W. 42 St., New York, N.Y. 10036. \(51 / 2 \times 81 / 4\) in., 207 pp . Cloth, \(\$ 8.50\)

The first siv chapters are devoted to an introduction and explanation of the principles underlying maser action. Two chapters on the microwave maser follow, then eight on the laser. Elementary.

SILICON RECTIFIER SALE
 delivery
750 MA-SILICON "TOPHAT" DIODES
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { PIV/RMS } \\
50 / 35 \\
.05 \text { ea. } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { PIV/RMS } \\
100 / 70 \\
.09 \text { ea }
\end{gathered}
\] & \[
\begin{gathered}
\text { PIV/RMS } \\
200140 \\
.12 \mathrm{ea}
\end{gathered}
\] & \[
\begin{aligned}
& \text { PIV/RMS } \\
& 300 / 210 \\
& 16{ }^{2}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { PIV/RMS } \\
& 400 /<00 \\
& .20 \text { ea }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIV/RMS } \\
& 500 / 350 \\
& 24 \text { ea. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIV/RMS } \\
& 600 / 420 \\
& .32 \mathrm{ea} .
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { PIV/RMS } \\
& \text { YOO/490 } \\
& .40 \text { ea. }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { PIV/RMS } \\
& 8000560 \\
& .48 \mathrm{ca} .
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIV/RMS } \\
& 900 / 630 \\
& .55 \text { ea. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIV/RMS } \\
& 1000 / 700 \\
& 70 \text { ea. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIV/RMS } \\
& 1100 / 770 \\
& .75 \text { ea. }
\end{aligned}
\] \\
\hline
\end{tabular}

ALL TESTS AC \& DC \& FWD \& LOAD SILICON POWER DIODE STUDS \begin{tabular}{lllll} 
D.C. & 50 PIV & 100 PIV & 150 PIV & 200 PIV \\
AMPS & 35 RMS & 70 RMS & 105 RMMS & 140 RMS \\
\hline
\end{tabular}


 "SCR" SILICON CONTROLLED RECTIFIERS "SCR" \(\begin{array}{cccccccc} & \text { PRV } & \text { AMP } & \text { AMP } & \text { AMP } & \text { PRV } & \text { AMP } & \text { AMP } \\ \text { AK }\end{array}\)

Money Back guarantee. \(\$ 2.00 \mathrm{~min}\). order. Orders F.O.B. NYC. tnclude check or money order. Shpg. charges plus. C.O.D. orders \(25 \%\) dow

Warren Electronic Components
663.665 Broadway N.Y., N.Y. 10012 OR3. 2620


TREASURE FINDERS Supersensitive new transistor models detect buried gold, silver, coins, firearms. Locate Indian burlal grounds, explore beaches, shacks, ghost town
\(\$ 19.95 \mathrm{up}\). FREE CATALOG.
RELCO
Dept. RE 8 ; BOX 10563, Houston, Texas 77018

\section*{RADIO HANDBOOK}

800 pages of clear, simple theory, and complete, practical how-to-build data.
\[
\text { Book \#166 . . . } \$ 9.50 \text { (Foreign } \$ 10.50 \text { ) }
\]

From your clectronic parts distributor or
EDITORS and ENGINEERS, Ltd.
Summerland 5. California 93067

\section*{RENT} STEREO TAPES brochure Postpaid 2 to 5 day delivery ( 48 States) stereo-rarti 1616. D TERRACE WAY, SANTA ROSA, CALIF

\section*{LOW-COST BUSINESS AIDS FOR RADIO-TV SERVICE

\section*{RADIO-T SERVICE}

\section*{RADIO-T SERVICE}

Order books. invoice forms. job tick books, service call books. cash books and statement books for use with your rub ber stamp. Customer file systems, book keeping systerns, many others. Write for
FREE 32 PAGE CATALOG now.
OELRICH PUBLICATIONS
6556 Higgins Rd., Chicago. III. 60656

\$200 SONOTONE HEARING AID For \({ }^{5} 5\)
 Fach HEARING AID is a
Complete AUDIO AMPLIFIER CRYSTAL MICROPHONE 3 SUBMINIATURE TUBES CABINET as shown, Etc. TOP ITEM for Experimenter can be modified and converted to
RADIOS - INTERCOMS - TRANSMITIERS - SECRET LISTENING DEVICES - MICROPHONE - Etc

Complete as Illustrated incl,
SCHEMATIC DIAGRAM (less Earphone \& Battery)

Brooks, 84 Yesey St., New. York 7, N. Y.


CLASSIFIED ADVERTISING ORDER FORM
Please refer to heading at top of classified section for complete data concerning terms frequency discounts, closing dates, word count, etc.
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 6 & 7 & 8 & 9 & 10 \\
\hline 11 & 12 & 13 & 14 & 15 \\
\hline 16 & 17 & 18 & 19 & 20 \\
\hline 21 & 22 & 23 & 24 & 25 \\
\hline 26 & 27 & 28 & 29 & 30 \\
\hline 31 & 32 & 33 & 34 & 35 \\
\hline
\end{tabular}
\(\overline{\text { No. of Words }}\left\{\begin{array}{l}@ .30 \text { Non-Commercial Rate } \\ @ .55 \text { Commercial Rate }\end{array}\right\}=\$ \ldots\) Total Enclosed
Insert__time(s)
Starting with_issue \begin{tabular}{l} 
Payment must ac- \\
company order un- \\
Iess p aced \\
through accred- \\
ited advertising \\
agency. 84
\end{tabular}

NAME
ADDRESS
CITY-
ZIP
SIGNATURE
MAIL TO: RADIO-ELECTRONICS, CLASSIFIED AD DEPT., 154 WEST 14 TH ST., NEW YORK, N.Y. 10011

\section*{HI-FI SPECIAL! ELECTROSTATIC TWEETER}
MADE BY fAMOUS LORENZ-I.T.T.-FOR GRUNDIG-NEVER BEFORE OFFERED FOR SALE \(\left.\begin{array}{l}\text { BUY } 2 \text { FOR STEREO-4" SQ. } \\ \text { IT'S A NATURAL FOR THE HI-FI ENTHUSIASTS } \\ \text { (Illustration resembles tweeters in stock) }\end{array}\right\}\)

\subsection*{1.95}

3-TRANSISTOR AMPLIFIER

- Only \(3^{\prime \prime} \times 2^{\prime \prime} \times x^{3} /{ }^{\prime \prime}\)
- Printed Circuif


TRANSITRON SCRS contsiliteon PRV Amp Amp


CHOOSE ANY \$1 ITEM FREE
GET BOTH GIFTS FREE WITH EVERY \$10 ORDER


\section*{\begin{tabular}{c} 
worlo's \\
most popular \\
\hline
\end{tabular}\(\$ 1\) PARTS PAKS} 3 SUBMINIATURE MIKE TRANSFORMERS 10 PHONO PLUG-n-jACK SETS, tuners-amis 3 SUBOUNCER TR'STOR tr'stomer. hmut. outhi
10 ELECTROLYTICS, FP \& tubulars. to 500 mf 10 ELECTROLYTICS, FP \& tubulars, to 500 mf 30 "TEXAS"' PRECISION RESISTORS to 60 CERAMIC CONDENSERS, discs. npo's to ,osnif \(\$ 1\) 4 TRANSISTOR TRANSFORMERS 40 WORLD'S SMALLEST RESIST., \(5 \%\) too, \(1 / 10 \mathrm{~W} \$ 1\) 40 SUBMINIATURE COND., 10.05 mf , cerafil too \(\$ 1\) 3 'TINY' V. CONTROLS, \(2 /\) sw, \%h, 5 meg. 1 meg \$1 TRANSISTOR TRANSFORMERS, ASER TRANSDUCER \$ - INFRA-RED PHOTO DETECTOR TRANSDUCER \$ 1-INFRA-RED PARABOLIC REFLECTOR \& FILTER \$1 30 PRECISION RESISTORS,
60 TUBULAR CONDENSERS, to . m m to 1 ks 40 DISC CONDENSERS 27 nimf to .05 mf to 60 TUBE SOCKETS receptacich, audio, plugs, etc. \$1 10 PANEL SWITCHES, rotary-micro-slide-power 30 POWER RESISTORS, to 50 W . to 24 Kohms 50 MICA CAPACITORS, to .01 mf . silvers too 10 VOLUME CONTROLS to 1 meg , switch too 50 RADIO \& TV KNOBS. asstd, colors, styles 10 TRANSISTOR ELECTROLYTICS, 10 to \(100 \mathrm{~ms} . \$ 1\) \$25 RADIO-n-TV SURPRISE, wide varicty 50 COILS \& CHOKES, W. Whenking-cte 35 ALLEN BRADLEY \& IRC TWO WATTERS 100 ASST. HALF WATT RESISTORS, \(5 \% \%\) too 60 HI-Q RESISTORS, \(1,2.1,2 \mathrm{~W}\) to 1 mer. \(5 \%\) too \(\$\)


\section*{ADVERTISING INDEX}

Radio-Electronics does not assume responsibility for any errors which may appear in the index below. Allied Radio Corp. . . . . . . . . . . . . . . . . . . . . . 69-70 Arco Electronics. Inc. (Elmenco Div.) Third Cover Brooks Radio \& TV Corp. ............... K2-x3, 91
Capitol Radio Engineering Institute. The ... 13 astle TV Tuner Service, Inc.
CLASSIFIED
Cleveland Institute of Electronics
Coyne Electronics \(\mathrm{CO}_{\text {. }}\).
DeVry Technical Institute
Dymo Industries, Inc.
EiCO Electronic Instrument Co., Inc.
Electronic Chemical Corp. ........
Flectronc Measu
Gernsback Library ........................................
Grantham School of Electronics
Heald's Engineering College
Heath Co.
International Crystal Manufacturing Co., Inc Kinematix. Inc
I afayette Radio Electronics Corp. ................
LV/University (Div. of Ling-Temco-Vought
Mallury \& Co...............
MARKET CENTER
Mercury Electronics Corp.
Multicore Sales Corp.
National Radio Institute
National Technical Schoois ....................|x்-21.
Philco-Techrep Division (Subsidiary of Ford Motor Co.)
Polypaks
Progressive "Edu-Kits", Inc
Rad-Tel Tube Co.
RCA Citizens Band
RCA Electronic Components \& Devices
Fourth Cover
RCA Institutes
Kotron Manufacturing Corp. ...............
Sams \& Co., Inc., Howard W. ...............23, 68
Sarkes Tarzian. Inc. (Tuner Service Div.) ... 6e
CHOOI, DIRECTORY
Scott. Inc., H. 11 .
Sencore
Sprague Products Co. . . . . . . . . . . . . . . . . . . . 7

Sylvania (Subsidiary of General 「elephone \&
Electronics)
Electronics) ................. 65
Texas Czystals (Div. of Whitehall Electronics
Triad Distributor Div. (Div. of Litton Indus-
Triplett Flectrical Instrument Co., The
United Radio CO Second Cover
Iniversity, LTV (Div. of Ling-Tenco-Vought. Inc.)

MARKE
Brooks Radio \& TV Corp.
Editors and Engineers. Liti.
Edmund Scientific Co.
Oelrich Pablications
Relco
Stereo-Part
l'ab
1 ransistors Unlimited Co
Valley TV Tuner Service
Warren Electronic Components
SCHOOL DIRECTORY
American astitute of Engincering \& Technology Century Correspondence Schools
Electronic Technical Institute
Indiana Home Study Institute, The (Eastern Div.) Milwatukee School of Enginecring
Northridge College of Science \& Engincering
Nurthrop Institute of Technology
Philadelphia Wireless Technical Institute
Tri-State College
Valparaso Technical Institute

\section*{\(\longrightarrow\) Classilied Ads}

\begin{abstract}
COMMERCIAL RATE (for firms or individuals offering commercial products or services): 554 per word ... minimum 10 words.
NON-COMMERCIAL RATE (for individuals who want to buy or sell personal items): \(30 ¢\) per word ... no minimum

Payment must accompany all ads except those placed by accredited advertising agencies \(10 \%\) discount on 12 consecutive insertions, if paid in advance. Misleading or objestionable ads not accepted. Copy for October issue must reach us before August 14th.
WORD COUNT: Include name and address. Name of city (Des Moines) or of state (New York) counts as one word each. Zone or Zip Code numbers not counted. (We reserve the right to omit Zip Code if space does not permit.) Count each abbreviation, initial, single figure or group of figures or letters as a word. Symbols or groups such as \(8 \times 10, C O D, A C\), etc., count as one word. Hyphenaied words count as two words. Minor over-wordage will be edited to match advance payment.
\end{abstract}

\section*{Ancio- HISi}

SAVE \(30-60 \%\) Siereo rnusic on tape. Free bar speakers. SAXITONE, 1776 Columbia Road Washington D. C

WRITE for highest discounts on components recorders, tapes, from franchised distributors Send for FREE monthly specials. CARSTON \(125 \cdot \mathrm{R}\) East 88 , N.Y.C. 10028.

RENT STEREO TAPES-over 2,500 different-al major labels - free brochure. STEREO-PART 1616 Terrace Way. Santa Rosa, Calif.
PHONOGRAPH NEEDLE discount sale. Write for Free brochure. MOORE'S, 19 Goldsboro, Easton Mree

\section*{HI FI. Ham Equipment, Discount Catalog} MENDOTA CAMERA SHOP, Mendota, Minn

TAPE recorders, Hi-Fi components, Sleep-learn ing equirment. Tapes. Unusual values. Free catalog. DRESSNER, 1523 Jericho Turnpike New Hyde Park 5. N.Y
WINDSOR TAPE CLUB members HEAR BEFORE THEY BUY. Free "samplers" oí new releases Save on tape Brochure-WINDSOR TAPE CLUB, Dept. A Windsor, Calif

HI-FI COMPONENTS. Tape Recorders, at guar anteed "WE will not be undersold" prices. 15 day moneyback guarantee. Two-year warranty NO Catalog, Quotations Free. HI FIDELITY CEN
TER, \(1797^{(R)}\) Ist Ave., New York, N. Y. 10028

\section*{EDUCATION INSTRUCTION}

SLEEP LEARNING. Hypnotism! Tapes, records books, equipment. Details. strange catalog
FREE. RESEARCH ASSOCIATION. Box \(24 . R D\) Olympia. Wash

HIGHLY-effective home study review for FCC commercial phone exams. Free literature mont. Idaho 8352
FCC LICENSE in 6 weeks. First Class Radio Tele phone. Results Guaranteed. ELKINS RADIO SCHOOL, 2503 E Inwood, Dallas. Tex

PHOTOGRAPHY FOR PLEASURE or profit. Lear at home. Practical basic training. Long estab lished School. Free book. AMERICAN SCHOOL Dept. 187 C , Chicago, 11 . 60614

\section*{BUSINESS AIDS}

JUST STARTING IN TV SERVICE? Write for FREE 32 PAGE CATALOG of Service Order books invoices, job tickets, phone message books CATIONS, 6556 W. Higgins, Chicago, III. 60656.

1,000 Business Cards. "Raised Letters" \$3.75 postpaid. Samples. ROUTH, RE8, 2633 Randleman, Greensboro. N.C. 27406.

RADIO \& TV TUBES 33c. Free List. CORNELL 4217.E University. San Diego. Cailf. 92105

BEFORE You Buy Receiving Tubes, Test Equip ment, HIFI Components, Kits. Parts, etc. send for your Giant Free Zalytron Current Cata og. featuring all STANDARD BRAND TUBES all Year Guaraniee-all at BiGGEST DISCOUNT Year Guaraniee-áll at BIGGEST DISCOUNTS hobbyists. experimenters. engineers. techni cians. WHY PAY MORE? ZALYTRON TUBE CORP.. 469R Jericho Turnpike. Mineola. N. Y. TRANSISTORIZED Treasure Detectors Find buried gold, silver, coins. \(\$ 19.95\) up. Kits avail able. Free catalog. RELCO-A25, Box 10563 Houston 18. Texas.
PRINTED CIRCUIT BOARDS. Hams, Experi menters. Catalog \(10 \notin\). P/M ELECTRONICS, BOX 6288. Seattle. Wash. 98188

TRANSISTOR TELEVISION TRANSLATORS. Re broadcast 25 miles, meets F.C.C. Specitications Battery powered. KEITH ANDERSON COMPANY Piedmont. So. Dak.
7" TV TEST TUBE-\$6.99. Tubes E145-\$2.95 6211 (12AU7 equiv.) 39 c. 3 for \(\$ 1\). Germanium dıodes, tested, equiv. \(1 \mathrm{NJ} 34,1 \mathrm{~N} 60\) etc.. 30 for
\(\$ 1\). Tophat silicon rectifiers, \(750 \mathrm{MA}-1000\) PIV 75 . Transistcrs, tubes. resistors. condensers etc. bargain priced. Free catalog. ARCTURUS City. N. J. 07087
UIAGRAMS FOR REPAIRING RADIOS \(\$ 1.00\). TeI evision \(\$ 2.50\). Give make. model. DIAGRAM SERVICE, Box 1151 RE, Manchester Eonn
IGNITION! Transistor. Coil, Bellas: \(\$ 750\). Free Parts List. TRANSFIRE, Carlisle 20. Mass

TRANS.NITIOr! Electronic Ignition parts kit. Negative ground \$20, Coil. Manual SPECIAL \(\$ 8.50\) Manual \(\$ 2\). ANDERSON ENGiNEERING Wrentham. Mas
CONVERT any telivision to sensitive, big.screen oscilloscope. Only minor changes reauired. No elecironic experience necessar\%. Ilfusirated Dlans \(\$\) ? RELCO. Eox 10563 . Hous'on 18 . Tex TRANSISTORS. SCF's, diodes. nizkel-cadmium batteries, meiters, crystals, compononts. Qual ity guaranieed. Send 10 for caialoz. EDEC.
TRONiC COMFONENIS CO. P.O. EO: 2902B. TRONIC COMFONENTS CO. P.O. Bo: 2902 B
Baton Rouge. La. \(708 \geqslant 1\).
TV CAMERAS, transmitters, converiers, etc Lowest Factory prices. Catalos \(10 *\) VANGUARD 190-48-99th Ave.,

SEMICONDUCTORS. miniature electronic com ponents, surpius bargains.-free catalog. ELEC TRONIC CONTROL DESIGN COMPANY-P.O Box 1432A, Plainfield, N.J. 07061.
GOVERNMENT SURPLUS JEEPS- \(\$ 62.50\), Volt meters - \$1.05, Transmitters - \(\$ 6.18\) Óscillo scopes, Walkie-Talkies, Multimeters. Typica ENTERPRISES, Box 402-F19. Jamaica 30, N.Y.

METER PROTECTOR, will protect the meter of your multi-tester permanently from ascidental your multitester permanentiy from ascidental overloads due to the selector switch set on tector does not woar out will not affect the accuracy of multi-tester, with this protector it
will become impossible to bend the pointer, or ou need this protection as you need the volt ohm meter itself, instal yourself in few minutes, satisfaction guar anteed or money refunded. \$3.95 PP. JAMES ELECTRONICS, 8 W. Main Street, Du Quoin, III 62832.

JAPANESE MERCHANDISE from Radio to Cam era. Any inquiries answered. Catalog, and in formation \$1.00. TOMIO UENO, No. 538 Shı bamatacho Katushikaku, Tokyo, Japan.
F.M. TUNERS. Single tube units 88.108 mcs Brand new less tube. Die cast unit-pulley/string drive as used by Admiral-RCA in recent models Output 10.7 mcs I.F. can be used for series o parallel heaters. 130 volts. B plus. Excellent fo general replacement or construction. With in SEIVEY EICTRONICS. ELEY ELECTRONICS, 2409 Main Street. Ev anston, III.

BRAND NEW 8YP4 Test Tube-\$17.95. "A Must for every 1964 issue Pas 32 ) SEC check or money order for imme. Page 32.) Send to: SAMSON KINESCOPE, Inc. 250 No. Good man Street. Rochester, N.Y. 14607.

PROFESSIONAL ELECTRONICS PROJECTS Organs. Timers, Computers, etc.- \$1 up. Cata FREE ELECTRONICS CATALOG. Tremendous bargains. ELECTROLABS, Department C.226G Hewlett, N.Y. 11557

\section*{Generol}

TV SERVICE ORDER BOOKS for use with your ubber Write for FREE 32 PAGE CATALOG and Special Rubber Stamp Offer. OELRICH PUBLICATIONS, 6556 W. Higgins. Chicago. III. 60656

\section*{Canadians}

CANADIANS Have you seen ELECTRON, Cana da's own Service and Hobby magazine? Sub scription \(\$ 3.50\). ELECTRON, Box 796, Montreal Canada.

\section*{WANTED}

QUICK CASH ... for Electronic EQUIPMENT BARRY, 512 Broadway. New York N Y How 212 WÁLKER 5-7000.
PHOTOGRAPHS and TRANSPARENCIES wanted - to \(\$ 500.00\) each. Valuable information Free. Write PICTURE, Box 74607 . Hollywood, Free.
90004.
G.R. H.P. L\&N. etc. Special tubes. manuals, ATES, 434 Patterson Road, Dayton 19. Ohio

\section*{sexvicas}

TRANSISTORIZED products dealers catalog, \$1 INTERMARKET. CPO 1717. Tokvo. Jadan SPEAKER RECONING. Satistaction Guaranteed \(C\) \& \(M\) RECONE CO., 18 E. Trenton Ave.. Mor ALL MAKES OF ELECTRICAL INSTRUMENTS AND TESTING equipment repaired. HAZELTON NSTRUMEN1 CO., 128 Liberty Si.. New York

INVENTORS. We will develop. help sell you idea or invention, patented or unpatented. Ou national manufacturer clients are urgently seek ing new items for outright cash sale or royal ties. Financial assistance available. 10 years proven performance. For free information, write Depi. 53. WALL STREET INVENTION BROKER AGE, 79 Wall Street, New York. N. Y. 10005.
TV TUNERS Rebuilt and Aligned per manufac turers specification. Only \(\$ 9.50\). Any Make UHF or VHF. We ship COD Ninety day written guar antee. Ship complete with tubes or write fo free mailing kit and dealer brochure. JW ELEC
TRONICS. Box D. BIoomington. Ind. TRONICS. Box D. Bloomington, Ind
METERS - MULTIMETERS REPAIRED and cali brated. BIGELOW ELECTRONICS, Box 71.B, Bluffton, Ohio

\section*{MISCELLANEOUS}

HIGH WEEKLY EARNINGS! Address-mail letters featuring real merchandise. Get \(\$ 10\) with every order-ke particulars. MODERN MERCHANDISIN, Box 357 Oceanside, N.Y
RAD-TEL'S AMAZING OFFER. YOUR CHOICE [183-148-1183-II3 Fien HURRY OFFER EXPIRES OCTOBER 31, 1964

EACH TUBE INDIVIDUALLY \& ATTRACTIVELY BOXED \& BRANDED RAD-TEL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Qiy. Type & Price & Qty. Type & Price & aty. Type & Price & Qiy. Type & Price \\
\hline -0Z4 & 79 & - 5AQ5 & 54 & __6AX5 & 74 & _60A4 & 68 \\
\hline \(14 \times 2\) & . 62 & - 5AT8 & . 83 & 6BA6 & 50 & -60E6 & . 61 \\
\hline -183 & . 79 & - 5BK7 & 86 & -6BC5 & 61 & -60G6 & 62 \\
\hline -10N5 & . 55 & - 5B67 & 1.01 & -6BC8 & 1.04 & -6018 & 1.21 \\
\hline 163 & . 79 & - 5BR8 & . 83 & -6BE6 & 55 & -60k6 & 59 \\
\hline 113 & . 79 & - 5CGB & . 81 & -6BF5 & . 90 & -6DN6 & 1.55 \\
\hline 1 k 3 & . 79 & -5Cl8 & 76 & __6BF6 & 44 & -6006 & 1.10 \\
\hline \(1 \mathrm{P5}\) & . 77 & \(5 \mathrm{Ca8}\) & 84 & -6B66 & 1.70 & -6DT5 & . 81 \\
\hline 155 & . 75 & - 5EAB & 80 & 6BHB & . 98 & -6DT6 & . 53 \\
\hline 114 & . 72 & 5eub & 80 & -68J6 & . 65 & -60T8 & . 94 \\
\hline 145 & . 65 & 5 J6 & .72 & __68J7 & . 79 & -6EAB & . 79 \\
\hline \(1 \times 28\) & . 82 & 5 T 8 & . 86 & -68k7 & 85 & -6EB5 & . 73 \\
\hline 2AF4 & . 96 & \(5 \cup 4\) & . 60 & -6BL7 & 1.09 & -6EB8 & . 94 \\
\hline \(3 \mathrm{AL5}\) & . 46 & -5U8 & . 84 & -6BN6 & . 74 & -6EM5 & . 77 \\
\hline \(3{ }^{3} \mathrm{U}^{6}\) & . 54 & - 5V6 & 56 & -6BQ6 & 1.12 & -6EM7 & 82 \\
\hline 34 V 6 & . 42 & 5X8 & . 82 & -6B67 & 1.00 & -6EV8 & . 79 \\
\hline \(3 \mathrm{BC5}\) & . 63 & 5 Y 3 & 46 & -68u8 & 70 & -6EV5 & . 75 \\
\hline -38N6 & . 75 & -6AB4 & 46 & -68x7 & 1.11 & -6EW6 & . 57 \\
\hline -3848 & . 78 & -6AC7 & . 96 & 6826 & 55 & -6EY6 & . 75 \\
\hline 3896 & 58 & 6AF4 & 1.01 & -6827 & 1.03 & \(6 F G 7\) & . 69 \\
\hline -3B26 & . 56 & -6AG5 & . 70 & -6C4 & 45 & -6FV8 & . 79 \\
\hline \(3 \mathrm{CB6}\) & . 56 & 6AH4 & 81 & __6CB6 & . 55 & -6GH8 & . 80 \\
\hline \(3 \mathrm{CS6}\) & . 58 & 6aH6 & 1.10 & - 6C06 & 1.51 & -6GK5 & . 61 \\
\hline \(30 \mathrm{G4} 4\) & . 85 & - Gak5 & . 95 & -6CG7 & . 61 & -6GK6 & . 79 \\
\hline 30k6 & . 60 & -6als & 47 & -_6CGB & . 80 & -6GN8 & . 94 \\
\hline \(30 \mathrm{T6}\) & 54 & - 6 AM8 & 78 & -6CL8 & . 79 & -6H6 & . 58 \\
\hline - 3GK5 & 99 & -6acs & . 53 & - 6CM7 & . 69 & -6J5GT & . 51 \\
\hline -304 & . 63 & _6as5 & 60 & -6CN7 & . 70 & -6J6 & . 71 \\
\hline -354 & . 75 & _-64T6 & . 45 & -6CQ8 & . 92 & -6K6 & . 63 \\
\hline -3V4 & . 63 & - 6atr & 86 & -6CR6 & . 60 & -6S4 & . 52 \\
\hline - \({ }^{4807}\) & 1.01 & -6aU4 & . 85 & -6CS6 & 57 & ___6SATGT & . 99 \\
\hline -4CS6 & . 61 & - 6ave & 52 & -6CS7 & 69 & -6SH7 & 1.02 \\
\hline -40T6 & . 55 & - 6aub & . 87 & -6CU5 & 58 & -_6SJ7 & . 88 \\
\hline -4GM6 & . 60 & -_6av6 & . 41 & -6CU6 & 1.08 & __6SK7GT & . 95 \\
\hline 5AM8 & . 79 & -_6aws & . 90 & -6CY5 & . 70 & -6SL7GT & . 84 \\
\hline -5ANB & 90 & 6AX4 & 66 & 6 CY 7 & 71 & 6 SN7 & 65 \\
\hline
\end{tabular} 6 ft ., No. \(154 \quad 294 \mathrm{ea}\). Lots of \(3-25 \mathrm{c}\) ea.


RAD-TEL TUBE CO. NOT AFFILIATED WITH ANY OTHER MAIL ORDER TUBE COMPANY


PR 32 Send For New Tube \& Parts Catalog Send For Trouble Shoofing Guide

RAD-TEL Tube Co.


55 Chambers Street
Newark, New Jersey 07105
ENCLOSEU IS \$ \(\qquad\) Total Please rush order.
SEND:———iUE SUBSTITUTION BOOK, No. 193 Cheater Cord 29c ea. Lots of 3-25c ea. 1.25 EACH Orders under \(\$ 5.00\). Add \(\$ 1.00\) handling charge - plus postage. FPFI \(\square\) Send FREE Tube and Parts Catalog,
\(\square\) Send FREE Trouble Shooting Guide
NAME
ADORESS

\section*{Quality is no gamble! \\  \\ when you soectit ELMENCO ditpect MWar raper}

Every time you make a call... service a circuit ... change a component - you bet on the parts used. Make sure the odds are in your favor with miniaturized Elmenco Dipped Mylar-Paper (DP) capacitors. Over 100 million are in use now, because Elmenco DP capacitors give missile quality at commercial cost. Whether for radio-TV repairs, or critical industrial circuitry, reliable, dependable, rugged Elmenco capacitors eliminate profit-killing callbacks and customer complaints. Elmenco DP capacitors operate at \(125^{\circ} \mathrm{C}\) without derating, are completely moisture proof, and are up to \(50 \%\) smaller than comparable types. You can substitute values in a capacitor, but never virtues. Ask for Elmenco, and be sure you get it. Elmenco DP capacitors are available from stock only at authorized ARCO distributors throughout the U.S.A.


ARCO
electronics inc.

ARCO'S RESERVE WAREHOUSES You can get your Elmenco (DP) capacitors in any quantity within 24 hours from coast to coast. They're stocked in depth at Arco's reserve warehouses serving authorized Arco distributors Ihroughout the nation. Call your Arco distributor today!


\section*{Strict environmental control extends electron gun life and performance}

Even the smallest particle of dust can affect the life and precision performance of an electron gun in a television picture tube. In order to assure ultra-clean conditions for assembling guns that go into Silverama Picture Tubes, RCA designed and built a space-age white room in its Marion, Indiana, plant

Air in the white room is controlled by an electrostatic precipitatortype air conditioner. Higher than normal air pressure is maintained in the white room so no outside air can enter. At the entrance, "sticky fioor mats" remove dust from workers" shoes. Workers wear lint-free Dacron smoeks, lint-free nylon gloves, and rubber finger cots.
Yet, in addition to these precautions, RCA continually moritors
the white room's dust count by means of the digital-dust counter shown in the photo above. The unit is so sensitive it counts all dust particles from 0.32 micron (a micron is about one 39 -millionth of an inch, to 8 microns. Only when the "dust count" is below an acceptable level can electron guns be processed.

These exceptiorally strict environmental controls are another reason why you can be sure of customer satisfaction when you install an RCA Silverama Picture Tube

Silverama is made with an all-new electron gun, finest parts and materials, and a glass envelope that has been thoroughly cleaned and inspected prior to re-use.

\footnotetext{
Electron gun mounts are washed by ultra.sonic vibration in extra pure water to remove micro. scopic particles.


RCA ELECTRONIC COMPONENTS AND DEVICES. HARRISON, N. J
}


Electron guns, after drying, are kept in covered racks as farther assurance against dust con tamination```


[^0]:    Subscription Service: Address form 3579 and correspondence to Radio-Electronics, Subscriber Service, 154 West l4th Street, New York, N. Y. 10011 . When requesting a change of addiess, please furnish an address label from a recent issue. Allow one month for change of address.

[^1]:    -Registered Du Poni Trademark

